Wen Peng , Cheng-yan Ding , Yu Liu , Jia-nan Sun , Zhen Wei , Wen-bo Wang , Dian-hua Zhang , Jie Sun
{"title":"预测和解释热轧钢行业轧辊不均匀磨损的新范式","authors":"Wen Peng , Cheng-yan Ding , Yu Liu , Jia-nan Sun , Zhen Wei , Wen-bo Wang , Dian-hua Zhang , Jie Sun","doi":"10.1016/j.compind.2025.104318","DOIUrl":null,"url":null,"abstract":"<div><div>In the hot rolling industry, uneven roll wear significantly influences schedule free rolling and product quality, necessitating more precise wear prediction to improve the capabilities of hot rolling production. However, existing methods, laden with limitations, struggle to predict uneven roll wear precisely and transparently. To address these challenges, we present a novel paradigm that combines a computer simulation technique, classical wear theory and a data-driven approach for predicting uneven work roll wear in the hot rolling industry. Initially, a finite element model is constructed to simulate hot rolling processing. Subsequently, an Archard-theory-based work roll wear model is derived to calculate the theoretical wear loss using the simulation results. Following this, based on the theoretical wear loss, a deep ensemble model containing three base predictors is established. Notably, Shapley additive explanations (SHAP) and ensemble mechanism analysis are implemented to explain the predictive process of the wear loss. The comparative experimental results demonstrate the deep ensemble method achieves a 2 % accuracy improvement over other machine learning models. Additionally, the wear prediction results for a real case of a roll change period prove that, at the peak position of wear profile, the proposed paradigm surpasses the existing model by 7.2 %. Significantly, the feature contributions and process interpretable analysis based on SHAP make the proposed paradigm both transparent and reliable.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"170 ","pages":"Article 104318"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel paradigm for predicting and interpreting uneven roll wear in the hot rolling steel industry\",\"authors\":\"Wen Peng , Cheng-yan Ding , Yu Liu , Jia-nan Sun , Zhen Wei , Wen-bo Wang , Dian-hua Zhang , Jie Sun\",\"doi\":\"10.1016/j.compind.2025.104318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the hot rolling industry, uneven roll wear significantly influences schedule free rolling and product quality, necessitating more precise wear prediction to improve the capabilities of hot rolling production. However, existing methods, laden with limitations, struggle to predict uneven roll wear precisely and transparently. To address these challenges, we present a novel paradigm that combines a computer simulation technique, classical wear theory and a data-driven approach for predicting uneven work roll wear in the hot rolling industry. Initially, a finite element model is constructed to simulate hot rolling processing. Subsequently, an Archard-theory-based work roll wear model is derived to calculate the theoretical wear loss using the simulation results. Following this, based on the theoretical wear loss, a deep ensemble model containing three base predictors is established. Notably, Shapley additive explanations (SHAP) and ensemble mechanism analysis are implemented to explain the predictive process of the wear loss. The comparative experimental results demonstrate the deep ensemble method achieves a 2 % accuracy improvement over other machine learning models. Additionally, the wear prediction results for a real case of a roll change period prove that, at the peak position of wear profile, the proposed paradigm surpasses the existing model by 7.2 %. Significantly, the feature contributions and process interpretable analysis based on SHAP make the proposed paradigm both transparent and reliable.</div></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"170 \",\"pages\":\"Article 104318\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361525000831\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525000831","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A novel paradigm for predicting and interpreting uneven roll wear in the hot rolling steel industry
In the hot rolling industry, uneven roll wear significantly influences schedule free rolling and product quality, necessitating more precise wear prediction to improve the capabilities of hot rolling production. However, existing methods, laden with limitations, struggle to predict uneven roll wear precisely and transparently. To address these challenges, we present a novel paradigm that combines a computer simulation technique, classical wear theory and a data-driven approach for predicting uneven work roll wear in the hot rolling industry. Initially, a finite element model is constructed to simulate hot rolling processing. Subsequently, an Archard-theory-based work roll wear model is derived to calculate the theoretical wear loss using the simulation results. Following this, based on the theoretical wear loss, a deep ensemble model containing three base predictors is established. Notably, Shapley additive explanations (SHAP) and ensemble mechanism analysis are implemented to explain the predictive process of the wear loss. The comparative experimental results demonstrate the deep ensemble method achieves a 2 % accuracy improvement over other machine learning models. Additionally, the wear prediction results for a real case of a roll change period prove that, at the peak position of wear profile, the proposed paradigm surpasses the existing model by 7.2 %. Significantly, the feature contributions and process interpretable analysis based on SHAP make the proposed paradigm both transparent and reliable.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.