基于事件的工业烘箱热质传递神经偏微分方程模型

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Siddharth Prabhu , Sulman Haque , Dan Gurr , Loren Coley , Jim Beilstein , Srinivas Rangarajan , Mayuresh Kothare
{"title":"基于事件的工业烘箱热质传递神经偏微分方程模型","authors":"Siddharth Prabhu ,&nbsp;Sulman Haque ,&nbsp;Dan Gurr ,&nbsp;Loren Coley ,&nbsp;Jim Beilstein ,&nbsp;Srinivas Rangarajan ,&nbsp;Mayuresh Kothare","doi":"10.1016/j.compchemeng.2025.109171","DOIUrl":null,"url":null,"abstract":"<div><div>Convective drying is an ubiquitous unit operation in chemical and allied industries; it is energy intensive and a significant contributor to the carbon footprint of a plant. Developing detailed models, a digital twin, of an industrial oven can enable rigorous energy optimization. In this context, we use a neural partial differential equation formalism to train a model of an industrial oven to capture the evolution of the moisture and temperature as a solid passes through. We also use an event function to capture the transition of the moisture and the temperature between the constant rate drying regime and the falling rate drying regime. We show that this hybrid model, even when trained on partially observed and spatially sparse industrial data, accurately captures the system dynamics and generalizes effectively to other spatial locations. We proffer that neural differential equations provide enough flexibility to model complex chemical processes and include domain knowledge to deal with limited and noisy data.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"200 ","pages":"Article 109171"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An event-based neural partial differential equation model of heat and mass transport in an industrial drying oven\",\"authors\":\"Siddharth Prabhu ,&nbsp;Sulman Haque ,&nbsp;Dan Gurr ,&nbsp;Loren Coley ,&nbsp;Jim Beilstein ,&nbsp;Srinivas Rangarajan ,&nbsp;Mayuresh Kothare\",\"doi\":\"10.1016/j.compchemeng.2025.109171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Convective drying is an ubiquitous unit operation in chemical and allied industries; it is energy intensive and a significant contributor to the carbon footprint of a plant. Developing detailed models, a digital twin, of an industrial oven can enable rigorous energy optimization. In this context, we use a neural partial differential equation formalism to train a model of an industrial oven to capture the evolution of the moisture and temperature as a solid passes through. We also use an event function to capture the transition of the moisture and the temperature between the constant rate drying regime and the falling rate drying regime. We show that this hybrid model, even when trained on partially observed and spatially sparse industrial data, accurately captures the system dynamics and generalizes effectively to other spatial locations. We proffer that neural differential equations provide enough flexibility to model complex chemical processes and include domain knowledge to deal with limited and noisy data.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"200 \",\"pages\":\"Article 109171\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425001759\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001759","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对流干燥是化工及相关工业中普遍存在的单元操作;它是能源密集型的,是工厂碳足迹的重要贡献者。开发详细的模型,一个工业烤箱的数字双胞胎,可以实现严格的能源优化。在这种情况下,我们使用神经偏微分方程形式来训练工业烤箱的模型,以捕捉固体通过时湿度和温度的演变。我们还使用事件函数来捕捉恒定速率干燥状态和下降速率干燥状态之间的湿度和温度的转变。我们表明,即使在部分观测和空间稀疏的工业数据上训练,这种混合模型也能准确地捕获系统动态并有效地推广到其他空间位置。我们认为神经微分方程提供了足够的灵活性来模拟复杂的化学过程,并包括领域知识来处理有限的和有噪声的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An event-based neural partial differential equation model of heat and mass transport in an industrial drying oven
Convective drying is an ubiquitous unit operation in chemical and allied industries; it is energy intensive and a significant contributor to the carbon footprint of a plant. Developing detailed models, a digital twin, of an industrial oven can enable rigorous energy optimization. In this context, we use a neural partial differential equation formalism to train a model of an industrial oven to capture the evolution of the moisture and temperature as a solid passes through. We also use an event function to capture the transition of the moisture and the temperature between the constant rate drying regime and the falling rate drying regime. We show that this hybrid model, even when trained on partially observed and spatially sparse industrial data, accurately captures the system dynamics and generalizes effectively to other spatial locations. We proffer that neural differential equations provide enough flexibility to model complex chemical processes and include domain knowledge to deal with limited and noisy data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信