Diletta Rosati , Bianca Giulia Maurizi , Viola Bianca Serio , Debora Maffeo , Angela Rina , Francesca Mari , Maria Palmieri , Antonio Giordano , Elisa Frullanti
{"title":"从石棉暴露到癌变:恶性胸膜间皮瘤的转录组特征","authors":"Diletta Rosati , Bianca Giulia Maurizi , Viola Bianca Serio , Debora Maffeo , Angela Rina , Francesca Mari , Maria Palmieri , Antonio Giordano , Elisa Frullanti","doi":"10.1016/j.yexmp.2025.104973","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The incidence of malignant pleural mesothelioma (MPM) has surged due to widespread asbestos exposure, particularly since the mid-20th century. Despite significant advancements in cancer treatment, an effective cure for MPM remains elusive, largely due to a limited understanding of the molecular mechanisms underlying asbestos-related carcinogenesis. This exploratory study aims to uncover gene expression patterns uniquely altered in mesothelioma patients with documented asbestos exposure, providing a solid foundation for future research focused on identifying novel prognostic and predictive biomarkers.</div></div><div><h3>Methods</h3><div>Publicly available RNA sequencing data were analyzed through a bioinformatics pipeline to perform differential gene expression analysis. Additionally, functional enrichment analysis was applied to highlight significantly enriched Gene Ontology (GO) terms related to biological processes, molecular functions, and cellular components, offering insights into the molecular pathways involved in MPM development.</div></div><div><h3>Results</h3><div>The analysis uncovered a set of differentially expressed genes (DEGs) in MPM patients with documented asbestos exposure, as well as key GO terms. These enriched biological terms reflect processes such as ion homeostasis and oxidative stress response, providing crucial information on the cellular alterations driven by asbestos exposure.</div></div><div><h3>Conclusion</h3><div>This study's findings deepen our understanding of the molecular landscape underlying asbestos-induced carcinogenesis in MPM. The identification of specific DEGs and enriched GO terms lays the foundation for future investigations, including the development of biomarkers, with potential implications for the diagnostic and prognostic assessment of MPM.</div></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"143 ","pages":"Article 104973"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From asbestos exposure to carcinogenesis: Transcriptomic signatures in malignant pleural mesothelioma\",\"authors\":\"Diletta Rosati , Bianca Giulia Maurizi , Viola Bianca Serio , Debora Maffeo , Angela Rina , Francesca Mari , Maria Palmieri , Antonio Giordano , Elisa Frullanti\",\"doi\":\"10.1016/j.yexmp.2025.104973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The incidence of malignant pleural mesothelioma (MPM) has surged due to widespread asbestos exposure, particularly since the mid-20th century. Despite significant advancements in cancer treatment, an effective cure for MPM remains elusive, largely due to a limited understanding of the molecular mechanisms underlying asbestos-related carcinogenesis. This exploratory study aims to uncover gene expression patterns uniquely altered in mesothelioma patients with documented asbestos exposure, providing a solid foundation for future research focused on identifying novel prognostic and predictive biomarkers.</div></div><div><h3>Methods</h3><div>Publicly available RNA sequencing data were analyzed through a bioinformatics pipeline to perform differential gene expression analysis. Additionally, functional enrichment analysis was applied to highlight significantly enriched Gene Ontology (GO) terms related to biological processes, molecular functions, and cellular components, offering insights into the molecular pathways involved in MPM development.</div></div><div><h3>Results</h3><div>The analysis uncovered a set of differentially expressed genes (DEGs) in MPM patients with documented asbestos exposure, as well as key GO terms. These enriched biological terms reflect processes such as ion homeostasis and oxidative stress response, providing crucial information on the cellular alterations driven by asbestos exposure.</div></div><div><h3>Conclusion</h3><div>This study's findings deepen our understanding of the molecular landscape underlying asbestos-induced carcinogenesis in MPM. The identification of specific DEGs and enriched GO terms lays the foundation for future investigations, including the development of biomarkers, with potential implications for the diagnostic and prognostic assessment of MPM.</div></div>\",\"PeriodicalId\":12176,\"journal\":{\"name\":\"Experimental and molecular pathology\",\"volume\":\"143 \",\"pages\":\"Article 104973\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and molecular pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014480025000231\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014480025000231","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
From asbestos exposure to carcinogenesis: Transcriptomic signatures in malignant pleural mesothelioma
Background
The incidence of malignant pleural mesothelioma (MPM) has surged due to widespread asbestos exposure, particularly since the mid-20th century. Despite significant advancements in cancer treatment, an effective cure for MPM remains elusive, largely due to a limited understanding of the molecular mechanisms underlying asbestos-related carcinogenesis. This exploratory study aims to uncover gene expression patterns uniquely altered in mesothelioma patients with documented asbestos exposure, providing a solid foundation for future research focused on identifying novel prognostic and predictive biomarkers.
Methods
Publicly available RNA sequencing data were analyzed through a bioinformatics pipeline to perform differential gene expression analysis. Additionally, functional enrichment analysis was applied to highlight significantly enriched Gene Ontology (GO) terms related to biological processes, molecular functions, and cellular components, offering insights into the molecular pathways involved in MPM development.
Results
The analysis uncovered a set of differentially expressed genes (DEGs) in MPM patients with documented asbestos exposure, as well as key GO terms. These enriched biological terms reflect processes such as ion homeostasis and oxidative stress response, providing crucial information on the cellular alterations driven by asbestos exposure.
Conclusion
This study's findings deepen our understanding of the molecular landscape underlying asbestos-induced carcinogenesis in MPM. The identification of specific DEGs and enriched GO terms lays the foundation for future investigations, including the development of biomarkers, with potential implications for the diagnostic and prognostic assessment of MPM.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.