Chuning Dong , Yongping Chen , Ian Townend , Yiming Wu , Zichao Guo , Qin Jiang , Giovanni Coco , Karin R. Bryan , Zeng Zhou
{"title":"暴露对泥滩沉积物可蚀性垂直变化的影响","authors":"Chuning Dong , Yongping Chen , Ian Townend , Yiming Wu , Zichao Guo , Qin Jiang , Giovanni Coco , Karin R. Bryan , Zeng Zhou","doi":"10.1016/j.margeo.2025.107579","DOIUrl":null,"url":null,"abstract":"<div><div>Variations in meteorological conditions are known to influence the erodibility of sediments on tidal flats. However, there is limited understanding of how evaporation during exposure affects the stability of mudflats. In this study, we conducted field tests spanning 5 days in January 2021 and 14 days in August 2022 in the intertidal zone along the Yancheng coast in Jiangsu Province, China. We selected critical shear stress for erosion (τ<sub>cr</sub>) and shear strength (SS) as erosion parameters, and analyzed the variations in hydrodynamic and meteorological parameters, and vertical sediment properties. Our results indicate that bed exposure in summer significantly enhances sediment stability, an effect that extends below the surface layer and even to deeper layers. As exposure duration increases, the differences with depth become more pronounced, leading to increased variability in τ<sub>cr</sub>. This vertical gradient increases with exposure duration and atmospheric evaporation intensity, with both the values of vertical τ<sub>cr</sub> and SS in summer showing a nearly 2 times increase compared to that in winter. The primary controlling parameter for changes in sediment erodibility during summer exposure is water content, while in winter, the mean grain size (D50) and salinity are more significant. The causal relationship between summer and winter exposure and resistance to vertical erosion of mudflats, shown in this study, underscores the need to pay greater attention to the seasonal influence of atmospheric processes on the spatial heterogeneity of sediments that arises from tidal exposure.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"487 ","pages":"Article 107579"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of exposure on the vertical variation of mudflat sediment erodibility\",\"authors\":\"Chuning Dong , Yongping Chen , Ian Townend , Yiming Wu , Zichao Guo , Qin Jiang , Giovanni Coco , Karin R. Bryan , Zeng Zhou\",\"doi\":\"10.1016/j.margeo.2025.107579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Variations in meteorological conditions are known to influence the erodibility of sediments on tidal flats. However, there is limited understanding of how evaporation during exposure affects the stability of mudflats. In this study, we conducted field tests spanning 5 days in January 2021 and 14 days in August 2022 in the intertidal zone along the Yancheng coast in Jiangsu Province, China. We selected critical shear stress for erosion (τ<sub>cr</sub>) and shear strength (SS) as erosion parameters, and analyzed the variations in hydrodynamic and meteorological parameters, and vertical sediment properties. Our results indicate that bed exposure in summer significantly enhances sediment stability, an effect that extends below the surface layer and even to deeper layers. As exposure duration increases, the differences with depth become more pronounced, leading to increased variability in τ<sub>cr</sub>. This vertical gradient increases with exposure duration and atmospheric evaporation intensity, with both the values of vertical τ<sub>cr</sub> and SS in summer showing a nearly 2 times increase compared to that in winter. The primary controlling parameter for changes in sediment erodibility during summer exposure is water content, while in winter, the mean grain size (D50) and salinity are more significant. The causal relationship between summer and winter exposure and resistance to vertical erosion of mudflats, shown in this study, underscores the need to pay greater attention to the seasonal influence of atmospheric processes on the spatial heterogeneity of sediments that arises from tidal exposure.</div></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"487 \",\"pages\":\"Article 107579\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322725001045\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322725001045","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The role of exposure on the vertical variation of mudflat sediment erodibility
Variations in meteorological conditions are known to influence the erodibility of sediments on tidal flats. However, there is limited understanding of how evaporation during exposure affects the stability of mudflats. In this study, we conducted field tests spanning 5 days in January 2021 and 14 days in August 2022 in the intertidal zone along the Yancheng coast in Jiangsu Province, China. We selected critical shear stress for erosion (τcr) and shear strength (SS) as erosion parameters, and analyzed the variations in hydrodynamic and meteorological parameters, and vertical sediment properties. Our results indicate that bed exposure in summer significantly enhances sediment stability, an effect that extends below the surface layer and even to deeper layers. As exposure duration increases, the differences with depth become more pronounced, leading to increased variability in τcr. This vertical gradient increases with exposure duration and atmospheric evaporation intensity, with both the values of vertical τcr and SS in summer showing a nearly 2 times increase compared to that in winter. The primary controlling parameter for changes in sediment erodibility during summer exposure is water content, while in winter, the mean grain size (D50) and salinity are more significant. The causal relationship between summer and winter exposure and resistance to vertical erosion of mudflats, shown in this study, underscores the need to pay greater attention to the seasonal influence of atmospheric processes on the spatial heterogeneity of sediments that arises from tidal exposure.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.