CMImpute:跨哺乳动物物种的物种水平DNA甲基化样本的跨物种和组织植入

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Emily Maciejewski, Steve Horvath, Jason Ernst
{"title":"CMImpute:跨哺乳动物物种的物种水平DNA甲基化样本的跨物种和组织植入","authors":"Emily Maciejewski, Steve Horvath, Jason Ernst","doi":"10.1186/s13059-025-03561-2","DOIUrl":null,"url":null,"abstract":"The large-scale application of the mammalian methylation array has substantially expanded the availability of DNA methylation data in mammalian species. However, this data captures only a small portion of species-tissue combinations. To address this, we develop CMImpute (Cross-species Methylation Imputation), a method based on a conditional variational autoencoder, to impute DNA methylation representing species-tissue combinations. We demonstrate that CMImpute achieves strong sample-wise correlation between imputed and observed values. Using CMImpute and data from 348 species and 59 tissue types, we impute methylation data for 19,786 new species-tissue combinations. We expect CMImpute will be a useful resource for DNA methylation analyses.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"1 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMImpute: cross-species and tissue imputation of species-level DNA methylation samples across mammalian species\",\"authors\":\"Emily Maciejewski, Steve Horvath, Jason Ernst\",\"doi\":\"10.1186/s13059-025-03561-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large-scale application of the mammalian methylation array has substantially expanded the availability of DNA methylation data in mammalian species. However, this data captures only a small portion of species-tissue combinations. To address this, we develop CMImpute (Cross-species Methylation Imputation), a method based on a conditional variational autoencoder, to impute DNA methylation representing species-tissue combinations. We demonstrate that CMImpute achieves strong sample-wise correlation between imputed and observed values. Using CMImpute and data from 348 species and 59 tissue types, we impute methylation data for 19,786 new species-tissue combinations. We expect CMImpute will be a useful resource for DNA methylation analyses.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03561-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03561-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物甲基化阵列的大规模应用极大地扩展了哺乳动物物种DNA甲基化数据的可用性。然而,这些数据只捕获了物种组织组合的一小部分。为了解决这个问题,我们开发了CMImpute(跨物种甲基化Imputation),这是一种基于条件变分自编码器的方法,用于计算代表物种组织组合的DNA甲基化。我们证明了CMImpute在输入值和观测值之间实现了很强的样本相关。利用CMImpute和来自348个物种和59种组织类型的数据,我们估算了19,786个新的物种-组织组合的甲基化数据。我们期望CMImpute将成为DNA甲基化分析的有用资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMImpute: cross-species and tissue imputation of species-level DNA methylation samples across mammalian species
The large-scale application of the mammalian methylation array has substantially expanded the availability of DNA methylation data in mammalian species. However, this data captures only a small portion of species-tissue combinations. To address this, we develop CMImpute (Cross-species Methylation Imputation), a method based on a conditional variational autoencoder, to impute DNA methylation representing species-tissue combinations. We demonstrate that CMImpute achieves strong sample-wise correlation between imputed and observed values. Using CMImpute and data from 348 species and 59 tissue types, we impute methylation data for 19,786 new species-tissue combinations. We expect CMImpute will be a useful resource for DNA methylation analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信