基于光谱空间融合和记忆增强的高光谱视频跟踪

IF 13.7
Yuzeng Chen;Qiangqiang Yuan;Hong Xie;Yuqi Tang;Yi Xiao;Jiang He;Renxiang Guan;Xinwang Liu;Liangpei Zhang
{"title":"基于光谱空间融合和记忆增强的高光谱视频跟踪","authors":"Yuzeng Chen;Qiangqiang Yuan;Hong Xie;Yuqi Tang;Yi Xiao;Jiang He;Renxiang Guan;Xinwang Liu;Liangpei Zhang","doi":"10.1109/TIP.2025.3569479","DOIUrl":null,"url":null,"abstract":"Hyperspectral video (HSV) provides rich spectral-spatial-temporal information, enabling the capture of complex object dynamics beyond the limitations of conventional single- and multi-modal tracking. However, current HSV tracking methods face challenges such as data scarcity, band gaps, spectral fragmentation, temporal underutilization, and high computational load, which constrain performance. In this article, we present SpectralTrack, a novel HSV tracking framework with spectral-spatial fusion and memory enhancement. SpectralTrack incorporates an explicit visual prompting module to mitigate band gaps and spectral fragmentation. We further introduce an extraction-matching-interaction module, which leverages a template-bridging search adapter and a multi-layer perceptron adapter within a multi-modal Transformer architecture for efficient cross-modal feature extraction-matching-interaction. Additionally, a memory perception module enhances state reasoning by injecting temporal prompts to refine spectral and spatial cues. SpectralTrack follows parameter-efficient fine-tuning and feature-level fusion to alleviate data scarcity and reduce computational overhead. We instantiate two variants, SpectralTrack and SpectralTrack+, across nine HSV tracking datasets, demonstrating superior effectiveness over extensive trackers. Implementations and results will be available at <uri>https://github.com/YZCU/SpectralTrack</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"3547-3562"},"PeriodicalIF":13.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Video Tracking With Spectral–Spatial Fusion and Memory Enhancement\",\"authors\":\"Yuzeng Chen;Qiangqiang Yuan;Hong Xie;Yuqi Tang;Yi Xiao;Jiang He;Renxiang Guan;Xinwang Liu;Liangpei Zhang\",\"doi\":\"10.1109/TIP.2025.3569479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral video (HSV) provides rich spectral-spatial-temporal information, enabling the capture of complex object dynamics beyond the limitations of conventional single- and multi-modal tracking. However, current HSV tracking methods face challenges such as data scarcity, band gaps, spectral fragmentation, temporal underutilization, and high computational load, which constrain performance. In this article, we present SpectralTrack, a novel HSV tracking framework with spectral-spatial fusion and memory enhancement. SpectralTrack incorporates an explicit visual prompting module to mitigate band gaps and spectral fragmentation. We further introduce an extraction-matching-interaction module, which leverages a template-bridging search adapter and a multi-layer perceptron adapter within a multi-modal Transformer architecture for efficient cross-modal feature extraction-matching-interaction. Additionally, a memory perception module enhances state reasoning by injecting temporal prompts to refine spectral and spatial cues. SpectralTrack follows parameter-efficient fine-tuning and feature-level fusion to alleviate data scarcity and reduce computational overhead. We instantiate two variants, SpectralTrack and SpectralTrack+, across nine HSV tracking datasets, demonstrating superior effectiveness over extensive trackers. Implementations and results will be available at <uri>https://github.com/YZCU/SpectralTrack</uri>\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"3547-3562\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11007172/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11007172/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱视频(HSV)提供了丰富的光谱-时空信息,超越了传统单模和多模态跟踪的限制,能够捕获复杂的目标动态。然而,目前的HSV跟踪方法面临着数据稀缺、带隙、频谱碎片化、时间利用率不足和高计算负荷等挑战,这些挑战制约了HSV的性能。在本文中,我们提出了一种新的HSV跟踪框架SpectralTrack,它具有光谱空间融合和记忆增强功能。SpectralTrack集成了一个明确的视觉提示模块,以减轻带隙和光谱碎片。我们进一步介绍了一个提取-匹配-交互模块,该模块利用多模态Transformer架构中的模板桥接搜索适配器和多层感知器适配器来实现高效的跨模态特征提取-匹配-交互。此外,记忆感知模块通过注入时间提示来细化光谱和空间线索来增强状态推理。SpectralTrack采用参数高效微调和特征级融合来缓解数据稀缺和减少计算开销。我们实例化了两种变体,SpectralTrack和SpectralTrack+,跨越9个HSV跟踪数据集,展示了比广泛跟踪器更优越的有效性。实施和结果可在https://github.com/YZCU/SpectralTrack上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Video Tracking With Spectral–Spatial Fusion and Memory Enhancement
Hyperspectral video (HSV) provides rich spectral-spatial-temporal information, enabling the capture of complex object dynamics beyond the limitations of conventional single- and multi-modal tracking. However, current HSV tracking methods face challenges such as data scarcity, band gaps, spectral fragmentation, temporal underutilization, and high computational load, which constrain performance. In this article, we present SpectralTrack, a novel HSV tracking framework with spectral-spatial fusion and memory enhancement. SpectralTrack incorporates an explicit visual prompting module to mitigate band gaps and spectral fragmentation. We further introduce an extraction-matching-interaction module, which leverages a template-bridging search adapter and a multi-layer perceptron adapter within a multi-modal Transformer architecture for efficient cross-modal feature extraction-matching-interaction. Additionally, a memory perception module enhances state reasoning by injecting temporal prompts to refine spectral and spatial cues. SpectralTrack follows parameter-efficient fine-tuning and feature-level fusion to alleviate data scarcity and reduce computational overhead. We instantiate two variants, SpectralTrack and SpectralTrack+, across nine HSV tracking datasets, demonstrating superior effectiveness over extensive trackers. Implementations and results will be available at https://github.com/YZCU/SpectralTrack
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信