原始秩3组,二进制代码和3-设计

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
B. G. Rodrigues, Patrick Solé
{"title":"原始秩3组,二进制代码和3-设计","authors":"B. G. Rodrigues, Patrick Solé","doi":"10.1007/s10623-025-01647-3","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a primitive rank 3 permutation group acting on a set of size <i>v</i>. Binary codes of length <i>v</i> globally invariant under <i>G</i> are well-known to hold PBIBDs in their <span>\\(A_w\\)</span> codewords of weight <i>w</i>. The parameters of these designs are <span>\\(\\bigg (A_w,v,w,\\frac{wA_w}{v},\\lambda _1,\\lambda _2\\bigg ).\\)</span> When <span>\\(\\lambda _1=\\lambda _2=\\lambda ,\\)</span> the PBIBD becomes a 2-<span>\\((v,w,\\lambda )\\)</span> design. We obtain computationally 111 such designs when <i>G</i> ranges over <span>\\(\\textrm{L}_2(8){:}3, \\textrm{U}_{4}(2), \\textrm{U}_{3}(3){:}2, \\textrm{A}_8, \\textrm{S}_6(2),\\)</span> <span>\\(\\textrm{S}_{4}(4), \\textrm{U}_{5}(2), \\textrm{M}_{11}, \\textrm{M}_{22}, \\textrm{HS}, \\textrm{G}_2(4), \\textrm{S}_{8}(2),\\textrm{O}^{+}_{10}(2),\\)</span> and <span>\\(\\textrm{O}^{-}_{10}(2)\\)</span> in the notation of the Atlas. Included in the counting are 2-designs which are held by nonzero weight codewords of the binary adjacency codes of the triangular and square lattice graphs, respectively. The 2-designs in this paper can be obtained neither from Assmus–Mattson theorem, nor by the classical 2-tra nsitivity (or 2-homogeneity) argument of the automorphism group of the code. Further, the extensions of the codes that hold 2-designs sometimes hold 3-designs. We thus obtain nine self-complementary 3-designs on 16 (4), <span>\\(28,\\, 36\\)</span> (2), <span>\\(\\,56,\\, 176\\)</span> points respectively. The design on 176 points is invariant under the Higman–Sims group.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"40 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primitive rank 3 groups, binary codes, and 3-designs\",\"authors\":\"B. G. Rodrigues, Patrick Solé\",\"doi\":\"10.1007/s10623-025-01647-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a primitive rank 3 permutation group acting on a set of size <i>v</i>. Binary codes of length <i>v</i> globally invariant under <i>G</i> are well-known to hold PBIBDs in their <span>\\\\(A_w\\\\)</span> codewords of weight <i>w</i>. The parameters of these designs are <span>\\\\(\\\\bigg (A_w,v,w,\\\\frac{wA_w}{v},\\\\lambda _1,\\\\lambda _2\\\\bigg ).\\\\)</span> When <span>\\\\(\\\\lambda _1=\\\\lambda _2=\\\\lambda ,\\\\)</span> the PBIBD becomes a 2-<span>\\\\((v,w,\\\\lambda )\\\\)</span> design. We obtain computationally 111 such designs when <i>G</i> ranges over <span>\\\\(\\\\textrm{L}_2(8){:}3, \\\\textrm{U}_{4}(2), \\\\textrm{U}_{3}(3){:}2, \\\\textrm{A}_8, \\\\textrm{S}_6(2),\\\\)</span> <span>\\\\(\\\\textrm{S}_{4}(4), \\\\textrm{U}_{5}(2), \\\\textrm{M}_{11}, \\\\textrm{M}_{22}, \\\\textrm{HS}, \\\\textrm{G}_2(4), \\\\textrm{S}_{8}(2),\\\\textrm{O}^{+}_{10}(2),\\\\)</span> and <span>\\\\(\\\\textrm{O}^{-}_{10}(2)\\\\)</span> in the notation of the Atlas. Included in the counting are 2-designs which are held by nonzero weight codewords of the binary adjacency codes of the triangular and square lattice graphs, respectively. The 2-designs in this paper can be obtained neither from Assmus–Mattson theorem, nor by the classical 2-tra nsitivity (or 2-homogeneity) argument of the automorphism group of the code. Further, the extensions of the codes that hold 2-designs sometimes hold 3-designs. We thus obtain nine self-complementary 3-designs on 16 (4), <span>\\\\(28,\\\\, 36\\\\)</span> (2), <span>\\\\(\\\\,56,\\\\, 176\\\\)</span> points respectively. The design on 176 points is invariant under the Higman–Sims group.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-025-01647-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01647-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

设G为作用于大小为v的集合上的原始3阶置换群。众所周知,在G下,长度为v的全局不变二进制码在其权重为w的\(A_w\)码字中包含PBIBD。当\(\lambda _1=\lambda _2=\lambda ,\)将PBIBD变为2- \((v,w,\lambda )\)设计时,这些设计的参数为\(\bigg (A_w,v,w,\frac{wA_w}{v},\lambda _1,\lambda _2\bigg ).\)。在图集符号中,当G的范围大于\(\textrm{L}_2(8){:}3, \textrm{U}_{4}(2), \textrm{U}_{3}(3){:}2, \textrm{A}_8, \textrm{S}_6(2),\)\(\textrm{S}_{4}(4), \textrm{U}_{5}(2), \textrm{M}_{11}, \textrm{M}_{22}, \textrm{HS}, \textrm{G}_2(4), \textrm{S}_{8}(2),\textrm{O}^{+}_{10}(2),\)和\(\textrm{O}^{-}_{10}(2)\)时,我们计算得到111个这样的设计。计数中包括2种设计,它们分别由三角形格图和方形格图的二进制邻接码的非零权码字保存。本文的2-设计既不能由Assmus-Mattson定理得到,也不能由码的自同构群的经典2-透性(或2-齐性)论证得到。此外,适用于2种设计的规范的扩展有时也适用于3种设计。因此,我们分别在16 (4),\(28,\, 36\) (2), \(\,56,\, 176\)点上获得了9个自互补的3-设计。在Higman-Sims组下,176点的设计是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primitive rank 3 groups, binary codes, and 3-designs

Let G be a primitive rank 3 permutation group acting on a set of size v. Binary codes of length v globally invariant under G are well-known to hold PBIBDs in their \(A_w\) codewords of weight w. The parameters of these designs are \(\bigg (A_w,v,w,\frac{wA_w}{v},\lambda _1,\lambda _2\bigg ).\) When \(\lambda _1=\lambda _2=\lambda ,\) the PBIBD becomes a 2-\((v,w,\lambda )\) design. We obtain computationally 111 such designs when G ranges over \(\textrm{L}_2(8){:}3, \textrm{U}_{4}(2), \textrm{U}_{3}(3){:}2, \textrm{A}_8, \textrm{S}_6(2),\) \(\textrm{S}_{4}(4), \textrm{U}_{5}(2), \textrm{M}_{11}, \textrm{M}_{22}, \textrm{HS}, \textrm{G}_2(4), \textrm{S}_{8}(2),\textrm{O}^{+}_{10}(2),\) and \(\textrm{O}^{-}_{10}(2)\) in the notation of the Atlas. Included in the counting are 2-designs which are held by nonzero weight codewords of the binary adjacency codes of the triangular and square lattice graphs, respectively. The 2-designs in this paper can be obtained neither from Assmus–Mattson theorem, nor by the classical 2-tra nsitivity (or 2-homogeneity) argument of the automorphism group of the code. Further, the extensions of the codes that hold 2-designs sometimes hold 3-designs. We thus obtain nine self-complementary 3-designs on 16 (4), \(28,\, 36\) (2), \(\,56,\, 176\) points respectively. The design on 176 points is invariant under the Higman–Sims group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信