DeepProtein:蛋白质序列学习的深度学习库和基准。

Jiaqing Xie, Tianfan Fu
{"title":"DeepProtein:蛋白质序列学习的深度学习库和基准。","authors":"Jiaqing Xie, Tianfan Fu","doi":"10.1093/bioinformatics/btaf165","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Deep learning has deeply influenced protein science, enabling breakthroughs in predicting protein properties, higher-order structures, and molecular interactions.</p><p><strong>Results: </strong>This paper introduces DeepProtein, a comprehensive and user-friendly deep learning library tailored for protein-related tasks. It enables researchers to seamlessly address protein data with cutting-edge deep learning models. To assess model performance, we establish a benchmark that evaluates different deep learning architectures across multiple protein-related tasks, including protein function prediction, subcellular localization prediction, protein-protein interaction prediction, and protein structure prediction. Furthermore, we introduce DeepProt-T5, a series of fine-tuned Prot-T5-based models that achieve state-of-the-art performance on four benchmark tasks, while demonstrating competitive results on six of others. Comprehensive documentation and tutorials are available which could ensure accessibility and support reproducibility.</p><p><strong>Availability and implementation: </strong>Built upon the widely used drug discovery library DeepPurpose, DeepProtein is publicly available at https://github.com/jiaqingxie/DeepProtein.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepProtein: Deep Learning Library and Benchmark for Protein Sequence Learning.\",\"authors\":\"Jiaqing Xie, Tianfan Fu\",\"doi\":\"10.1093/bioinformatics/btaf165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Deep learning has deeply influenced protein science, enabling breakthroughs in predicting protein properties, higher-order structures, and molecular interactions.</p><p><strong>Results: </strong>This paper introduces DeepProtein, a comprehensive and user-friendly deep learning library tailored for protein-related tasks. It enables researchers to seamlessly address protein data with cutting-edge deep learning models. To assess model performance, we establish a benchmark that evaluates different deep learning architectures across multiple protein-related tasks, including protein function prediction, subcellular localization prediction, protein-protein interaction prediction, and protein structure prediction. Furthermore, we introduce DeepProt-T5, a series of fine-tuned Prot-T5-based models that achieve state-of-the-art performance on four benchmark tasks, while demonstrating competitive results on six of others. Comprehensive documentation and tutorials are available which could ensure accessibility and support reproducibility.</p><p><strong>Availability and implementation: </strong>Built upon the widely used drug discovery library DeepPurpose, DeepProtein is publicly available at https://github.com/jiaqingxie/DeepProtein.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:深度学习深刻影响了蛋白质科学,使预测蛋白质性质、高阶结构和分子相互作用取得突破。结果:本文介绍了DeepProtein,这是一个为蛋白质相关任务量身定制的全面且用户友好的深度学习库。它使研究人员能够通过尖端的深度学习模型无缝地处理蛋白质数据。为了评估模型的性能,我们建立了一个基准来评估多个蛋白质相关任务的不同深度学习架构,包括蛋白质功能预测、亚细胞定位预测、蛋白质-蛋白质相互作用预测和蛋白质结构预测。此外,我们介绍了DeepProt-T5,这是一系列经过微调的基于prot - t5的模型,在四个基准任务上实现了最先进的性能,同时在其他六个基准任务上展示了具有竞争力的结果。全面的文档和教程可以确保可访问性和支持再现性。可用性和实现:建立在广泛使用的药物发现库deepurpose之上,DeepProtein可在https://github.com/jiaqingxie/DeepProtein.Supplementary上公开获取:补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepProtein: Deep Learning Library and Benchmark for Protein Sequence Learning.

Motivation: Deep learning has deeply influenced protein science, enabling breakthroughs in predicting protein properties, higher-order structures, and molecular interactions.

Results: This paper introduces DeepProtein, a comprehensive and user-friendly deep learning library tailored for protein-related tasks. It enables researchers to seamlessly address protein data with cutting-edge deep learning models. To assess model performance, we establish a benchmark that evaluates different deep learning architectures across multiple protein-related tasks, including protein function prediction, subcellular localization prediction, protein-protein interaction prediction, and protein structure prediction. Furthermore, we introduce DeepProt-T5, a series of fine-tuned Prot-T5-based models that achieve state-of-the-art performance on four benchmark tasks, while demonstrating competitive results on six of others. Comprehensive documentation and tutorials are available which could ensure accessibility and support reproducibility.

Availability and implementation: Built upon the widely used drug discovery library DeepPurpose, DeepProtein is publicly available at https://github.com/jiaqingxie/DeepProtein.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信