鱼群的自我重组与信息传递。

ArXiv Pub Date : 2025-05-09
Haotian Hang, Chenchen Huang, Alex Barnett, Eva Kanso
{"title":"鱼群的自我重组与信息传递。","authors":"Haotian Hang, Chenchen Huang, Alex Barnett, Eva Kanso","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The remarkable cohesion and coordination observed in moving animal groups and their collective responsiveness to threats are thought to be mediated by scale-free correlations, where changes in the behavior of one animal influence others in the group, regardless of the distance between them. But are these features independent of group size? Here, we investigate group cohesiveness and collective responsiveness in computational models of massive schools of fish of up to 50,000 individuals. We show that as the number of swimmers increases, flow interactions destabilize the school, creating clusters that constantly fragment, disperse, and regroup, similar to their biological counterparts. We calculate the spatial correlation and speed of information propagation in these dynamic clusters. Spatial correlations in cohesive and polarized clusters are indeed scale free, much like in natural animal groups, but fragmentation events are preceded by a decrease in correlation length, thus diminishing the group's collective responsiveness, leaving it more vulnerable to predation events. Importantly, in groups undergoing collective turns, the information about the change in direction propagates linearly in time among group members, thanks to the non-reciprocal nature of the visual interactions between individuals. Merging speeds up the transfer of information within each cluster by several fold, while fragmentation slows it down. Our findings suggest that flow interactions may have played an important role in group size regulation, behavioral adaptations, and dispersion in living animal groups.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-reorganization and Information Transfer in Massive Schools of Fish.\",\"authors\":\"Haotian Hang, Chenchen Huang, Alex Barnett, Eva Kanso\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The remarkable cohesion and coordination observed in moving animal groups and their collective responsiveness to threats are thought to be mediated by scale-free correlations, where changes in the behavior of one animal influence others in the group, regardless of the distance between them. But are these features independent of group size? Here, we investigate group cohesiveness and collective responsiveness in computational models of massive schools of fish of up to 50,000 individuals. We show that as the number of swimmers increases, flow interactions destabilize the school, creating clusters that constantly fragment, disperse, and regroup, similar to their biological counterparts. We calculate the spatial correlation and speed of information propagation in these dynamic clusters. Spatial correlations in cohesive and polarized clusters are indeed scale free, much like in natural animal groups, but fragmentation events are preceded by a decrease in correlation length, thus diminishing the group's collective responsiveness, leaving it more vulnerable to predation events. Importantly, in groups undergoing collective turns, the information about the change in direction propagates linearly in time among group members, thanks to the non-reciprocal nature of the visual interactions between individuals. Merging speeds up the transfer of information within each cluster by several fold, while fragmentation slows it down. Our findings suggest that flow interactions may have played an important role in group size regulation, behavioral adaptations, and dispersion in living animal groups.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在移动的动物群体中观察到的显著的凝聚力和协调以及它们对威胁的集体反应被认为是由无标度相关性介导的,其中一只动物的行为变化会影响群体中的其他动物,而不管它们之间的距离。但这些特征与群体规模无关吗?在这里,我们研究了群体凝聚力和集体反应的计算模型中多达50,000个人的大规模鱼群。我们发现,随着游泳者数量的增加,水流的相互作用破坏了鱼群的稳定,形成了不断分裂、分散和重组的鱼群,类似于它们的生物对应物。我们计算了这些动态集群中信息的空间相关性和传播速度。内聚和极化集群中的空间相关性确实是无尺度的,就像在自然动物群体中一样,但碎片化事件发生之前,相关长度会减少,从而降低了群体的集体反应能力,使其更容易受到捕食事件的影响。重要的是,在经历集体转弯的群体中,由于个体之间视觉交互的非互惠性质,关于方向变化的信息在群体成员之间随时间线性传播。合并将每个集群内的信息传输速度提高了几倍,而碎片则减慢了传输速度。我们的研究结果表明,流动相互作用可能在现存动物群体的群体规模调节、行为适应和分散中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-reorganization and Information Transfer in Massive Schools of Fish.

The remarkable cohesion and coordination observed in moving animal groups and their collective responsiveness to threats are thought to be mediated by scale-free correlations, where changes in the behavior of one animal influence others in the group, regardless of the distance between them. But are these features independent of group size? Here, we investigate group cohesiveness and collective responsiveness in computational models of massive schools of fish of up to 50,000 individuals. We show that as the number of swimmers increases, flow interactions destabilize the school, creating clusters that constantly fragment, disperse, and regroup, similar to their biological counterparts. We calculate the spatial correlation and speed of information propagation in these dynamic clusters. Spatial correlations in cohesive and polarized clusters are indeed scale free, much like in natural animal groups, but fragmentation events are preceded by a decrease in correlation length, thus diminishing the group's collective responsiveness, leaving it more vulnerable to predation events. Importantly, in groups undergoing collective turns, the information about the change in direction propagates linearly in time among group members, thanks to the non-reciprocal nature of the visual interactions between individuals. Merging speeds up the transfer of information within each cluster by several fold, while fragmentation slows it down. Our findings suggest that flow interactions may have played an important role in group size regulation, behavioral adaptations, and dispersion in living animal groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信