结合深度学习和声级分析的强大的自动列车通过检测。

IF 1.4 Q3 ACOUSTICS
Erwann Betton-Ployon, Abbes Kacem, Jérôme Mars, Nadine Martin
{"title":"结合深度学习和声级分析的强大的自动列车通过检测。","authors":"Erwann Betton-Ployon, Abbes Kacem, Jérôme Mars, Nadine Martin","doi":"10.1121/10.0036754","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing needs for controlling high noise levels motivate development of automatic sound event detection and classification methods. Little work deals with automatic train pass-by detection despite a high degree of annoyance. To this matter, an innovative approach is proposed in this paper. A generic classifier identifies vehicle noise on the raw audio signal. Then, combined short sound level analysis and mel-spectrogram-based classification refine this outcome to discard anything but train pass-bys. On various long-term signals, a 90% temporal overlap with reference demarcation is observed. This high detection rate allows a proper railway noise contribution estimation in different soundscapes.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust automatic train pass-by detection combining deep learning and sound level analysis.\",\"authors\":\"Erwann Betton-Ployon, Abbes Kacem, Jérôme Mars, Nadine Martin\",\"doi\":\"10.1121/10.0036754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing needs for controlling high noise levels motivate development of automatic sound event detection and classification methods. Little work deals with automatic train pass-by detection despite a high degree of annoyance. To this matter, an innovative approach is proposed in this paper. A generic classifier identifies vehicle noise on the raw audio signal. Then, combined short sound level analysis and mel-spectrogram-based classification refine this outcome to discard anything but train pass-bys. On various long-term signals, a 90% temporal overlap with reference demarcation is observed. This high detection rate allows a proper railway noise contribution estimation in different soundscapes.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0036754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0036754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

控制高噪声水平的需求日益增长,推动了声事件自动检测和分类方法的发展。尽管有很大的烦恼,但很少有工作涉及火车自动过路检测。针对这一问题,本文提出了一种创新的方法。通用分类器识别原始音频信号上的车辆噪声。然后,结合短声级分析和基于mel谱图的分类来改进这一结果,以丢弃除火车过路外的任何东西。在各种长期信号上,观察到90%的时间重叠与参考标定。这种高检出率允许在不同的声景中适当地估计铁路噪声贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust automatic train pass-by detection combining deep learning and sound level analysis.

The increasing needs for controlling high noise levels motivate development of automatic sound event detection and classification methods. Little work deals with automatic train pass-by detection despite a high degree of annoyance. To this matter, an innovative approach is proposed in this paper. A generic classifier identifies vehicle noise on the raw audio signal. Then, combined short sound level analysis and mel-spectrogram-based classification refine this outcome to discard anything but train pass-bys. On various long-term signals, a 90% temporal overlap with reference demarcation is observed. This high detection rate allows a proper railway noise contribution estimation in different soundscapes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信