基于小波散射特征的帕金森语音自动检测。

IF 1.4 Q3 ACOUSTICS
Mittapalle Kiran Reddy, Paavo Alku
{"title":"基于小波散射特征的帕金森语音自动检测。","authors":"Mittapalle Kiran Reddy, Paavo Alku","doi":"10.1121/10.0036660","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study the automatic detection of Parkinson's disease (PD) from speech using features computed by a two-layer wavelet scattering network, which generates locally stable and translation-invariant features at each layer. The scattering features are encoded using Fisher vectors to obtain a single fixed-size feature vector per utterance. Support vector machine and feed-forward neural network classifiers are trained using the utterance-level features to perform the detection task (healthy vs PD). The results obtained with the PC-GITA database revealed that the proposed approach shows better results in comparison to the state-of-the-art techniques. The best classification accuracy of 87% was achieved with the proposed approach using speech from a text reading task.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of Parkinsonian speech using wavelet scattering features.\",\"authors\":\"Mittapalle Kiran Reddy, Paavo Alku\",\"doi\":\"10.1121/10.0036660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we study the automatic detection of Parkinson's disease (PD) from speech using features computed by a two-layer wavelet scattering network, which generates locally stable and translation-invariant features at each layer. The scattering features are encoded using Fisher vectors to obtain a single fixed-size feature vector per utterance. Support vector machine and feed-forward neural network classifiers are trained using the utterance-level features to perform the detection task (healthy vs PD). The results obtained with the PC-GITA database revealed that the proposed approach shows better results in comparison to the state-of-the-art techniques. The best classification accuracy of 87% was achieved with the proposed approach using speech from a text reading task.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0036660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0036660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于两层小波散射网络的语音特征自动检测帕金森病(PD)的方法,该方法在每一层上生成局部稳定和平移不变的特征。利用Fisher向量对散射特征进行编码,得到单个固定大小的特征向量。使用话语级特征训练支持向量机和前馈神经网络分类器来执行检测任务(健康vs PD)。使用PC-GITA数据库获得的结果表明,与最先进的技术相比,所提出的方法显示出更好的结果。使用文本阅读任务中的语音,该方法达到了87%的最佳分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic detection of Parkinsonian speech using wavelet scattering features.

In this paper, we study the automatic detection of Parkinson's disease (PD) from speech using features computed by a two-layer wavelet scattering network, which generates locally stable and translation-invariant features at each layer. The scattering features are encoded using Fisher vectors to obtain a single fixed-size feature vector per utterance. Support vector machine and feed-forward neural network classifiers are trained using the utterance-level features to perform the detection task (healthy vs PD). The results obtained with the PC-GITA database revealed that the proposed approach shows better results in comparison to the state-of-the-art techniques. The best classification accuracy of 87% was achieved with the proposed approach using speech from a text reading task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信