引导人工智能伦理:在人工智能实践和技术的竞争中,ANN和ANFIS用于透明和负责任的项目评估。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-04-30 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1535845
Sandeep Wankhade, Manoj Sahni, Ernesto León-Castro, Maricruz Olazabal-Lugo
{"title":"引导人工智能伦理:在人工智能实践和技术的竞争中,ANN和ANFIS用于透明和负责任的项目评估。","authors":"Sandeep Wankhade, Manoj Sahni, Ernesto León-Castro, Maricruz Olazabal-Lugo","doi":"10.3389/frai.2025.1535845","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The rapid evolution of Artificial Intelligence (AI) necessitates robust ethical frameworks to ensure responsible project deployment. This study addresses the challenge of quantifying ethical criteria in AI projects amidst contesting communicative practices, organizational structures, and enabling technologies, which shape AI's societal implications.</p><p><strong>Methods: </strong>We propose a novel framework integrating Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to evaluate AI project performance and model ethical uncertainties using Fuzzy logic. A Fuzzy weighted average approach quantifies critical ethical dimensions: transparency, fairness, accountability, privacy, security, explainability, human involvement, and societal impact.</p><p><strong>Results: </strong>The framework enables a structured assessment of AI projects, enhancing transparency and accountability by mapping ethical criteria to project outcomes. ANN evaluates performance metrics, while ANFIS models uncertainties, providing a comprehensive ethical evaluation under complex conditions.</p><p><strong>Discussion: </strong>By combining ANN and ANFIS, this study advances the understanding of AI's ethical dimensions, offering a scalable approach for accountable AI systems. It reframes organizational communication and decision-making, embedding ethics within AI's technological and structural contexts. This work contributes to responsible AI innovation, fostering trust and societal alignment in AI deployments.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1535845"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083503/pdf/","citationCount":"0","resultStr":"{\"title\":\"Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies.\",\"authors\":\"Sandeep Wankhade, Manoj Sahni, Ernesto León-Castro, Maricruz Olazabal-Lugo\",\"doi\":\"10.3389/frai.2025.1535845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The rapid evolution of Artificial Intelligence (AI) necessitates robust ethical frameworks to ensure responsible project deployment. This study addresses the challenge of quantifying ethical criteria in AI projects amidst contesting communicative practices, organizational structures, and enabling technologies, which shape AI's societal implications.</p><p><strong>Methods: </strong>We propose a novel framework integrating Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to evaluate AI project performance and model ethical uncertainties using Fuzzy logic. A Fuzzy weighted average approach quantifies critical ethical dimensions: transparency, fairness, accountability, privacy, security, explainability, human involvement, and societal impact.</p><p><strong>Results: </strong>The framework enables a structured assessment of AI projects, enhancing transparency and accountability by mapping ethical criteria to project outcomes. ANN evaluates performance metrics, while ANFIS models uncertainties, providing a comprehensive ethical evaluation under complex conditions.</p><p><strong>Discussion: </strong>By combining ANN and ANFIS, this study advances the understanding of AI's ethical dimensions, offering a scalable approach for accountable AI systems. It reframes organizational communication and decision-making, embedding ethics within AI's technological and structural contexts. This work contributes to responsible AI innovation, fostering trust and societal alignment in AI deployments.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1535845\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083503/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1535845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1535845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

导论:人工智能(AI)的快速发展需要健全的道德框架来确保负责任的项目部署。本研究解决了在相互竞争的交流实践、组织结构和使能技术中量化人工智能项目中的伦理标准的挑战,这些实践、组织结构和使能技术塑造了人工智能的社会影响。方法:我们提出了一个集成人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)的新框架,用于评估人工智能项目绩效,并使用模糊逻辑建模道德不确定性。模糊加权平均方法量化了关键的道德维度:透明度、公平性、问责性、隐私性、安全性、可解释性、人类参与和社会影响。结果:该框架能够对人工智能项目进行结构化评估,通过将道德标准映射到项目成果,提高透明度和问责制。ANN评估绩效指标,而ANFIS对不确定性进行建模,在复杂条件下提供全面的伦理评估。讨论:通过结合人工神经网络和ANFIS,本研究促进了对人工智能伦理维度的理解,为负责任的人工智能系统提供了一种可扩展的方法。它重塑了组织沟通和决策,将伦理嵌入人工智能的技术和结构背景中。这项工作有助于负责任的人工智能创新,促进人工智能部署中的信任和社会一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies.

Introduction: The rapid evolution of Artificial Intelligence (AI) necessitates robust ethical frameworks to ensure responsible project deployment. This study addresses the challenge of quantifying ethical criteria in AI projects amidst contesting communicative practices, organizational structures, and enabling technologies, which shape AI's societal implications.

Methods: We propose a novel framework integrating Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to evaluate AI project performance and model ethical uncertainties using Fuzzy logic. A Fuzzy weighted average approach quantifies critical ethical dimensions: transparency, fairness, accountability, privacy, security, explainability, human involvement, and societal impact.

Results: The framework enables a structured assessment of AI projects, enhancing transparency and accountability by mapping ethical criteria to project outcomes. ANN evaluates performance metrics, while ANFIS models uncertainties, providing a comprehensive ethical evaluation under complex conditions.

Discussion: By combining ANN and ANFIS, this study advances the understanding of AI's ethical dimensions, offering a scalable approach for accountable AI systems. It reframes organizational communication and decision-making, embedding ethics within AI's technological and structural contexts. This work contributes to responsible AI innovation, fostering trust and societal alignment in AI deployments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信