监测巴赫曼-布普综合征患者生物样本中ODC活性和多胺。

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-26 DOI:10.1016/bs.mie.2025.01.071
Chad R Schultz, Elizabeth A VanSickle, Caleb P Bupp, André S Bachmann
{"title":"监测巴赫曼-布普综合征患者生物样本中ODC活性和多胺。","authors":"Chad R Schultz, Elizabeth A VanSickle, Caleb P Bupp, André S Bachmann","doi":"10.1016/bs.mie.2025.01.071","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamines are aliphatic molecules that include putrescine, spermidine, and spermine. Polyamines are present in most living organisms including humans. These positively charged molecules play important roles in cell physiology and pathology by contributing to embryonic cell development, regulation of cell division and, if overproduced, the stimulation of cancer cell proliferation and tumorigenesis. We recently discovered Bachmann-Bupp Syndrome (BABS); a rare neurodevelopmental disorder linked to de novo mutations in the ornithine decarboxylase 1 (ODC1) gene. ODC1 gene mutations that are linked to BABS always produce C-terminally truncated versions of the enzyme ornithine decarboxylase (ODC). These shortened ODC proteins remain enzymatically active and are not cleared by the proteasome, therefore leading to ODC protein accumulation in cells. ODC is a key enzyme of polyamine biosynthesis by converting ornithine to putrescine, and if accumulated, can lead to high putrescine levels in human cells including red blood cells (RBCs) and primary dermal fibroblasts. Here we describe how to quantitatively measure ODC enzymatic activity and the polyamines by a radiolabeled <sup>14</sup>C-ornithine assay and by reverse phase (RP)-HPLC, respectively. While these methods have been developed decades ago, many publications provide incomplete protocols with omission of experimental details, which inadvertently can lead to mistakes, inconclusive results, and failed experiments. There is a growing number of laboratories that have become interested in exploring polyamines (in part due to metabolomics analyses in human health-related studies). The detailed protocols of this chapter provide step-by-step guidance detailing how to measure ODC activity and polyamines in human RBCs.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"715 ","pages":"257-270"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring ODC activity and polyamines in Bachmann-Bupp syndrome patient biological samples.\",\"authors\":\"Chad R Schultz, Elizabeth A VanSickle, Caleb P Bupp, André S Bachmann\",\"doi\":\"10.1016/bs.mie.2025.01.071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyamines are aliphatic molecules that include putrescine, spermidine, and spermine. Polyamines are present in most living organisms including humans. These positively charged molecules play important roles in cell physiology and pathology by contributing to embryonic cell development, regulation of cell division and, if overproduced, the stimulation of cancer cell proliferation and tumorigenesis. We recently discovered Bachmann-Bupp Syndrome (BABS); a rare neurodevelopmental disorder linked to de novo mutations in the ornithine decarboxylase 1 (ODC1) gene. ODC1 gene mutations that are linked to BABS always produce C-terminally truncated versions of the enzyme ornithine decarboxylase (ODC). These shortened ODC proteins remain enzymatically active and are not cleared by the proteasome, therefore leading to ODC protein accumulation in cells. ODC is a key enzyme of polyamine biosynthesis by converting ornithine to putrescine, and if accumulated, can lead to high putrescine levels in human cells including red blood cells (RBCs) and primary dermal fibroblasts. Here we describe how to quantitatively measure ODC enzymatic activity and the polyamines by a radiolabeled <sup>14</sup>C-ornithine assay and by reverse phase (RP)-HPLC, respectively. While these methods have been developed decades ago, many publications provide incomplete protocols with omission of experimental details, which inadvertently can lead to mistakes, inconclusive results, and failed experiments. There is a growing number of laboratories that have become interested in exploring polyamines (in part due to metabolomics analyses in human health-related studies). The detailed protocols of this chapter provide step-by-step guidance detailing how to measure ODC activity and polyamines in human RBCs.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"715 \",\"pages\":\"257-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2025.01.071\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

多胺是脂肪族分子,包括腐胺、亚精胺和精胺。多胺存在于包括人类在内的大多数生物体中。这些带正电的分子在细胞生理和病理中发挥重要作用,通过促进胚胎细胞发育,调节细胞分裂,如果过量生产,则刺激癌细胞增殖和肿瘤发生。我们最近发现了巴赫曼-布普综合征(BABS);这是一种罕见的神经发育障碍,与鸟氨酸脱羧酶1 (ODC1)基因的新生突变有关。与BABS相关的ODC1基因突变总是产生c端截断的鸟氨酸脱羧酶(ODC)。这些缩短的ODC蛋白保持酶活性,不被蛋白酶体清除,因此导致ODC蛋白在细胞中积累。ODC是将鸟氨酸转化为腐胺的多胺生物合成的关键酶,如果积累,可导致人体细胞(包括红细胞)和初级真皮成纤维细胞中的高腐胺水平。在这里,我们描述了如何定量测量ODC酶活性和多胺分别通过放射性标记14c鸟氨酸测定和反相(RP)-HPLC。虽然这些方法已经发展了几十年,但许多出版物提供了不完整的协议,遗漏了实验细节,这无意中可能导致错误,不确定的结果和失败的实验。越来越多的实验室对探索多胺感兴趣(部分原因是人体健康相关研究中的代谢组学分析)。本章的详细协议提供了一步一步的指导,详细说明了如何测量人体红细胞中的ODC活性和多胺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring ODC activity and polyamines in Bachmann-Bupp syndrome patient biological samples.

Polyamines are aliphatic molecules that include putrescine, spermidine, and spermine. Polyamines are present in most living organisms including humans. These positively charged molecules play important roles in cell physiology and pathology by contributing to embryonic cell development, regulation of cell division and, if overproduced, the stimulation of cancer cell proliferation and tumorigenesis. We recently discovered Bachmann-Bupp Syndrome (BABS); a rare neurodevelopmental disorder linked to de novo mutations in the ornithine decarboxylase 1 (ODC1) gene. ODC1 gene mutations that are linked to BABS always produce C-terminally truncated versions of the enzyme ornithine decarboxylase (ODC). These shortened ODC proteins remain enzymatically active and are not cleared by the proteasome, therefore leading to ODC protein accumulation in cells. ODC is a key enzyme of polyamine biosynthesis by converting ornithine to putrescine, and if accumulated, can lead to high putrescine levels in human cells including red blood cells (RBCs) and primary dermal fibroblasts. Here we describe how to quantitatively measure ODC enzymatic activity and the polyamines by a radiolabeled 14C-ornithine assay and by reverse phase (RP)-HPLC, respectively. While these methods have been developed decades ago, many publications provide incomplete protocols with omission of experimental details, which inadvertently can lead to mistakes, inconclusive results, and failed experiments. There is a growing number of laboratories that have become interested in exploring polyamines (in part due to metabolomics analyses in human health-related studies). The detailed protocols of this chapter provide step-by-step guidance detailing how to measure ODC activity and polyamines in human RBCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信