{"title":"人类成纤维细胞直接重编程成功能齐全的滋养细胞干细胞。","authors":"Meir Azagury, Yosef Buganim","doi":"10.1007/7651_2025_648","DOIUrl":null,"url":null,"abstract":"<p><p>Trophoblast stem cells (TSCs), equivalent to first-trimester cytotrophoblasts, serve as valuable models for studying placental diseases and understanding early embryogenesis. Recent studies have demonstrated that human-induced trophoblast stem cells (hiTSCs) can be generated either by overexpressing the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) in fibroblasts or through the transdifferentiation of pluripotent stem cells. In this chapter, we describe a methodology for directly converting fibroblasts into fully functional hiTSCs using the transcription factors GATA3, OCT4, KLF4, and MYC (GOKM). This approach circumvents the need for inducing full pluripotency and avoids the expression of pluripotency factors per se. Moreover, the GOKM method seems to be superior technique, as it yields high number of colonies and a transcriptomic profile closely resembling blastocyst/first trimester-derived TSCs.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Reprogramming of Human Fibroblasts into Fully Functional Trophoblast Stem Cells.\",\"authors\":\"Meir Azagury, Yosef Buganim\",\"doi\":\"10.1007/7651_2025_648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trophoblast stem cells (TSCs), equivalent to first-trimester cytotrophoblasts, serve as valuable models for studying placental diseases and understanding early embryogenesis. Recent studies have demonstrated that human-induced trophoblast stem cells (hiTSCs) can be generated either by overexpressing the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) in fibroblasts or through the transdifferentiation of pluripotent stem cells. In this chapter, we describe a methodology for directly converting fibroblasts into fully functional hiTSCs using the transcription factors GATA3, OCT4, KLF4, and MYC (GOKM). This approach circumvents the need for inducing full pluripotency and avoids the expression of pluripotency factors per se. Moreover, the GOKM method seems to be superior technique, as it yields high number of colonies and a transcriptomic profile closely resembling blastocyst/first trimester-derived TSCs.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2025_648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2025_648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Direct Reprogramming of Human Fibroblasts into Fully Functional Trophoblast Stem Cells.
Trophoblast stem cells (TSCs), equivalent to first-trimester cytotrophoblasts, serve as valuable models for studying placental diseases and understanding early embryogenesis. Recent studies have demonstrated that human-induced trophoblast stem cells (hiTSCs) can be generated either by overexpressing the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) in fibroblasts or through the transdifferentiation of pluripotent stem cells. In this chapter, we describe a methodology for directly converting fibroblasts into fully functional hiTSCs using the transcription factors GATA3, OCT4, KLF4, and MYC (GOKM). This approach circumvents the need for inducing full pluripotency and avoids the expression of pluripotency factors per se. Moreover, the GOKM method seems to be superior technique, as it yields high number of colonies and a transcriptomic profile closely resembling blastocyst/first trimester-derived TSCs.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.