{"title":"β- arrest介导睫状GPR161的输出,但不与BBSome和IFT机制一起平滑。","authors":"Taiju Fujii, Norihito Murai, Shinya Aso, Hiroyuki Takatsu, Hye-Won Shin, Yohei Katoh, Kazuhisa Nakayama","doi":"10.1242/jcs.263793","DOIUrl":null,"url":null,"abstract":"<p><p>Specific G-protein-coupled receptors (GPCRs) exist on the ciliary membrane. Hedgehog signaling activation triggers the import of Smoothened into and export of GPR161 from cilia. The BBSome, which comprises eight Bardet-Biedl syndrome (BBS) proteins, mediates GPCR export, together with the intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes. The absence of any BBSome subunit or IFT27 (also known as BBS19) (an IFT-B subunit) impairs ciliary GPCR export, including that of GPR161. Plasma membrane GPCRs undergo phosphorylation by GPCR kinases (GRKs) and subsequent binding of β-arrestins [β-arrestin1 (ARRB1) and β-arrestin2 (ARRB2)], which is crucial for clathrin-mediated endocytosis. We here confirmed that GPR161 and β-arrestin are accumulated within cilia in the absence of IFT27 or the BBSome, and that ARRB1 and ARRB2 double-knockout impairs GPR161 export. Notably, we found that activation-mimetic β-arrestin mutants can interact with both the BBSome and ciliary GPCRs, and cause constitutive export of GPR161. Moreover, we demonstrated that GRK2 plays a crucial role in GPR161 export. We here propose that phosphorylated GPR161 recruits β-arrestins, converting them into their activated conformation. Activated β-arrestins then interact with the BBSome, which connects them to the IFT machinery to facilitate GPR161 export.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Arrestin mediates the export of ciliary GPR161 but not Smoothened together with the BBSome and intraflagellar transport machinery.\",\"authors\":\"Taiju Fujii, Norihito Murai, Shinya Aso, Hiroyuki Takatsu, Hye-Won Shin, Yohei Katoh, Kazuhisa Nakayama\",\"doi\":\"10.1242/jcs.263793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Specific G-protein-coupled receptors (GPCRs) exist on the ciliary membrane. Hedgehog signaling activation triggers the import of Smoothened into and export of GPR161 from cilia. The BBSome, which comprises eight Bardet-Biedl syndrome (BBS) proteins, mediates GPCR export, together with the intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes. The absence of any BBSome subunit or IFT27 (also known as BBS19) (an IFT-B subunit) impairs ciliary GPCR export, including that of GPR161. Plasma membrane GPCRs undergo phosphorylation by GPCR kinases (GRKs) and subsequent binding of β-arrestins [β-arrestin1 (ARRB1) and β-arrestin2 (ARRB2)], which is crucial for clathrin-mediated endocytosis. We here confirmed that GPR161 and β-arrestin are accumulated within cilia in the absence of IFT27 or the BBSome, and that ARRB1 and ARRB2 double-knockout impairs GPR161 export. Notably, we found that activation-mimetic β-arrestin mutants can interact with both the BBSome and ciliary GPCRs, and cause constitutive export of GPR161. Moreover, we demonstrated that GRK2 plays a crucial role in GPR161 export. We here propose that phosphorylated GPR161 recruits β-arrestins, converting them into their activated conformation. Activated β-arrestins then interact with the BBSome, which connects them to the IFT machinery to facilitate GPR161 export.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263793\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263793","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
β-Arrestin mediates the export of ciliary GPR161 but not Smoothened together with the BBSome and intraflagellar transport machinery.
Specific G-protein-coupled receptors (GPCRs) exist on the ciliary membrane. Hedgehog signaling activation triggers the import of Smoothened into and export of GPR161 from cilia. The BBSome, which comprises eight Bardet-Biedl syndrome (BBS) proteins, mediates GPCR export, together with the intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes. The absence of any BBSome subunit or IFT27 (also known as BBS19) (an IFT-B subunit) impairs ciliary GPCR export, including that of GPR161. Plasma membrane GPCRs undergo phosphorylation by GPCR kinases (GRKs) and subsequent binding of β-arrestins [β-arrestin1 (ARRB1) and β-arrestin2 (ARRB2)], which is crucial for clathrin-mediated endocytosis. We here confirmed that GPR161 and β-arrestin are accumulated within cilia in the absence of IFT27 or the BBSome, and that ARRB1 and ARRB2 double-knockout impairs GPR161 export. Notably, we found that activation-mimetic β-arrestin mutants can interact with both the BBSome and ciliary GPCRs, and cause constitutive export of GPR161. Moreover, we demonstrated that GRK2 plays a crucial role in GPR161 export. We here propose that phosphorylated GPR161 recruits β-arrestins, converting them into their activated conformation. Activated β-arrestins then interact with the BBSome, which connects them to the IFT machinery to facilitate GPR161 export.