仿生叶片中气体栓塞弹性毛细血管扩散过程中的通道变形。

IF 3.6 3区 生物学 Q1 BIOLOGY
François-Xavier Gauci, Ludovic Jami, Ludovic Keiser, Céline Cohen, Xavier Noblin
{"title":"仿生叶片中气体栓塞弹性毛细血管扩散过程中的通道变形。","authors":"François-Xavier Gauci, Ludovic Jami, Ludovic Keiser, Céline Cohen, Xavier Noblin","doi":"10.1098/rsfs.2024.0060","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleation and/or spreading of bubbles in water under tension (due to water evaporation) can be problematic for most plants along the ascending sap network-from roots to leaves-called xylem. Due to global warming, trees facing drought conditions are particularly threatened by the formation of such embolisms, which hinders sap flow and can ultimately be fatal. Polydimethylsiloxane (PDMS)-based biomimetic leaves simulating evapotranspiration have demonstrated that, in a linear configuration, the existence of a slender constriction in the channel allows for the creation of intermittent embolism propagation (as an interaction between the elasticity of the biomimetic leaf and the capillary forces at the air/water interfaces) (Keiser <i>et al</i>. 2022 <i>J. Fluid Mech.</i> <b>948</b>, A52 (doi:10.1017/jfm.2022.733); Keiser <i>et al</i>. 2024 <i>J. R. Soc. Interface</i> <b>21</b>, 20240103 (doi:10.1098/rsif.2024.0103)). Here, we use analogue PDMS-based biomimetic leaves in one dimension and two dimensions. To better explore the embolism spreading mechanism, we add to the setup an additional technique, allowing to measure directly the microchannel's ceiling deformation versus time, which corresponds to the pressure variations. We present here such a method that allows one to have quantitative insights into the dynamics of embolism spreading. The coupling between channel deformations and the Laplace pressure threshold explains the observed elastocapillary dynamics.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"15 2","pages":"20240060"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082845/pdf/","citationCount":"0","resultStr":"{\"title\":\"Channel deformations during elastocapillary spreading of gaseous embolisms in biomimetic leaves.\",\"authors\":\"François-Xavier Gauci, Ludovic Jami, Ludovic Keiser, Céline Cohen, Xavier Noblin\",\"doi\":\"10.1098/rsfs.2024.0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nucleation and/or spreading of bubbles in water under tension (due to water evaporation) can be problematic for most plants along the ascending sap network-from roots to leaves-called xylem. Due to global warming, trees facing drought conditions are particularly threatened by the formation of such embolisms, which hinders sap flow and can ultimately be fatal. Polydimethylsiloxane (PDMS)-based biomimetic leaves simulating evapotranspiration have demonstrated that, in a linear configuration, the existence of a slender constriction in the channel allows for the creation of intermittent embolism propagation (as an interaction between the elasticity of the biomimetic leaf and the capillary forces at the air/water interfaces) (Keiser <i>et al</i>. 2022 <i>J. Fluid Mech.</i> <b>948</b>, A52 (doi:10.1017/jfm.2022.733); Keiser <i>et al</i>. 2024 <i>J. R. Soc. Interface</i> <b>21</b>, 20240103 (doi:10.1098/rsif.2024.0103)). Here, we use analogue PDMS-based biomimetic leaves in one dimension and two dimensions. To better explore the embolism spreading mechanism, we add to the setup an additional technique, allowing to measure directly the microchannel's ceiling deformation versus time, which corresponds to the pressure variations. We present here such a method that allows one to have quantitative insights into the dynamics of embolism spreading. The coupling between channel deformations and the Laplace pressure threshold explains the observed elastocapillary dynamics.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\"15 2\",\"pages\":\"20240060\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082845/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2024.0060\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对于大多数沿着从根到叶(木质部)上升的汁液网络的植物来说,在张力(由于水蒸发)下,气泡在水中的成核和/或扩散是有问题的。由于全球变暖,面临干旱条件的树木特别受到这种栓塞形成的威胁,这种栓塞阻碍了树液的流动,最终可能是致命的。基于聚二甲基硅硅烷(PDMS)的模拟蒸散的仿生叶片已经证明,在线性配置下,通道中存在细长的收缩,可以产生间歇性的栓子传播(作为仿生叶片的弹性和空气/水界面上的毛细力之间的相互作用)(Keiser等人,2022. J.流体力学,948,A52 (doi:10.1017/jfm.2022.733);Keiser等。2024 J. R. Soc。接口21,20240103 (doi:10.1098/rsif.2024.0103))。在这里,我们使用了一维和二维的基于pdm的模拟仿生叶片。为了更好地探索栓塞扩散机制,我们在装置中增加了一项额外的技术,可以直接测量微通道顶部随时间的变形,这对应于压力变化。我们在这里提出了这样一种方法,可以定量地了解栓塞扩散的动态。通道变形和拉普拉斯压力阈值之间的耦合解释了观察到的弹性毛细管动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel deformations during elastocapillary spreading of gaseous embolisms in biomimetic leaves.

The nucleation and/or spreading of bubbles in water under tension (due to water evaporation) can be problematic for most plants along the ascending sap network-from roots to leaves-called xylem. Due to global warming, trees facing drought conditions are particularly threatened by the formation of such embolisms, which hinders sap flow and can ultimately be fatal. Polydimethylsiloxane (PDMS)-based biomimetic leaves simulating evapotranspiration have demonstrated that, in a linear configuration, the existence of a slender constriction in the channel allows for the creation of intermittent embolism propagation (as an interaction between the elasticity of the biomimetic leaf and the capillary forces at the air/water interfaces) (Keiser et al. 2022 J. Fluid Mech. 948, A52 (doi:10.1017/jfm.2022.733); Keiser et al. 2024 J. R. Soc. Interface 21, 20240103 (doi:10.1098/rsif.2024.0103)). Here, we use analogue PDMS-based biomimetic leaves in one dimension and two dimensions. To better explore the embolism spreading mechanism, we add to the setup an additional technique, allowing to measure directly the microchannel's ceiling deformation versus time, which corresponds to the pressure variations. We present here such a method that allows one to have quantitative insights into the dynamics of embolism spreading. The coupling between channel deformations and the Laplace pressure threshold explains the observed elastocapillary dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信