光谱常数的双层势。

IF 0.8 3区 数学 Q2 MATHEMATICS
Integral Equations and Operator Theory Pub Date : 2025-01-01 Epub Date: 2025-05-14 DOI:10.1007/s00020-025-02800-2
Felix L Schwenninger, Jens de Vries
{"title":"光谱常数的双层势。","authors":"Felix L Schwenninger, Jens de Vries","doi":"10.1007/s00020-025-02800-2","DOIUrl":null,"url":null,"abstract":"<p><p>We thoroughly analyse the double-layer potential's role in approaches to spectral sets in the spirit of Delyon-Delyon, Crouzeix and Crouzeix-Palencia. While the potential is well-studied, we aim to clarify on several of its aspects in light of these references. In particular, we illustrate how the associated integral operators can be used to characterize the convexity of the domain and the inclusion of the numerical range in its closure. We furthermore give a direct proof of a result by Putinar-Sandberg-a generalization of Berger-Stampfli's mapping theorem-circumventing dilation theory. Finally, we show for matrices that any smooth domain whose closure contains the numerical range admits a spectral constant only depending on the extremal function and vector. This constant is consistent with the so far best known absolute bound <math><mrow><mn>1</mn> <mo>+</mo> <msqrt><mn>2</mn></msqrt> </mrow> </math> .</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"97 2","pages":"13"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078368/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Double-Layer Potential for Spectral Constants Revisited.\",\"authors\":\"Felix L Schwenninger, Jens de Vries\",\"doi\":\"10.1007/s00020-025-02800-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We thoroughly analyse the double-layer potential's role in approaches to spectral sets in the spirit of Delyon-Delyon, Crouzeix and Crouzeix-Palencia. While the potential is well-studied, we aim to clarify on several of its aspects in light of these references. In particular, we illustrate how the associated integral operators can be used to characterize the convexity of the domain and the inclusion of the numerical range in its closure. We furthermore give a direct proof of a result by Putinar-Sandberg-a generalization of Berger-Stampfli's mapping theorem-circumventing dilation theory. Finally, we show for matrices that any smooth domain whose closure contains the numerical range admits a spectral constant only depending on the extremal function and vector. This constant is consistent with the so far best known absolute bound <math><mrow><mn>1</mn> <mo>+</mo> <msqrt><mn>2</mn></msqrt> </mrow> </math> .</p>\",\"PeriodicalId\":13658,\"journal\":{\"name\":\"Integral Equations and Operator Theory\",\"volume\":\"97 2\",\"pages\":\"13\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Equations and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-025-02800-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-025-02800-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们以Delyon-Delyon、Crouzeix和Crouzeix- palencia的精神彻底分析了双层势在光谱集方法中的作用。虽然对其潜力进行了充分的研究,但我们的目标是根据这些参考资料澄清其几个方面。特别地,我们说明了如何使用相关的积分算子来表征定义域的凸性以及在其闭包中包含的数值范围。我们进一步给出了putinar - sandberg -一个推广Berger-Stampfli的映射定理-规避膨胀理论的结果的直接证明。最后,我们证明了对于矩阵,其闭包包含数值范围的光滑域允许谱常数仅依赖于极值函数和向量。这个常数与目前已知的绝对边界1 + 2是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Double-Layer Potential for Spectral Constants Revisited.

We thoroughly analyse the double-layer potential's role in approaches to spectral sets in the spirit of Delyon-Delyon, Crouzeix and Crouzeix-Palencia. While the potential is well-studied, we aim to clarify on several of its aspects in light of these references. In particular, we illustrate how the associated integral operators can be used to characterize the convexity of the domain and the inclusion of the numerical range in its closure. We furthermore give a direct proof of a result by Putinar-Sandberg-a generalization of Berger-Stampfli's mapping theorem-circumventing dilation theory. Finally, we show for matrices that any smooth domain whose closure contains the numerical range admits a spectral constant only depending on the extremal function and vector. This constant is consistent with the so far best known absolute bound 1 + 2 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信