{"title":"STING通过上皮细胞线粒体活性氧-缺氧诱导因子1α轴参与金黄色葡萄球菌的炎症和增殖。","authors":"Xing Gao, Binfeng Wu, Yawei Qiu, Shiyuan Feng, Jinqiu Zhang, Jinfeng Miao","doi":"10.1128/iai.00138-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> infection poses a serious threat to the dairy industry and public health safety. The stimulator of interferon gene (STING) signaling pathway has been well established as effective in defending against viral infections. However, the role of STING is controversial during bacterial infections. Herein, we provide an insight into the role of STING during <i>S. aureus</i> infection. Our data revealed that the STING signaling pathway was activated in <i>S. aureus</i>-infected cells. <i>In vitro</i> investigations demonstrated that inhibiting STING reduced inflammation, hypoxia-inducible factor-1 alpha (HIF1α) expression, and mitochondrial reactive oxygen species (mROS) production. Interestingly, blocking HIF1α eliminated the escalation of inflammation associated with STING. Additionally, suppressing mROS production significantly reduced HIF1α expression and inflammation levels, while elevating mROS had the opposite effect. These results indicate that STING promoted inflammation through the mROS-HIF1α pathway. Given that glycolysis is driven by HIF1α, we investigated the role of glycolysis during infection. As expected, STING-elevated inflammation was linked with HIF1α-driven glycolysis. In terms of pathogenesis, STING contributed to <i>S. aureus</i> proliferation within cells and mouse mammary glands. Collectively, our findings demonstrate that STING facilitates infection via the mROS-HIF1α-glycolysis axis, highlighting its potential as a promising anti-inflammatory target.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0013825"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150761/pdf/","citationCount":"0","resultStr":"{\"title\":\"STING contributes to the inflammation and proliferation of <i>Staphylococcus aureus</i> via mitochondrial reactive oxygen species-hypoxic inducible factor 1α axis in epithelial cells.\",\"authors\":\"Xing Gao, Binfeng Wu, Yawei Qiu, Shiyuan Feng, Jinqiu Zhang, Jinfeng Miao\",\"doi\":\"10.1128/iai.00138-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Staphylococcus aureus</i> infection poses a serious threat to the dairy industry and public health safety. The stimulator of interferon gene (STING) signaling pathway has been well established as effective in defending against viral infections. However, the role of STING is controversial during bacterial infections. Herein, we provide an insight into the role of STING during <i>S. aureus</i> infection. Our data revealed that the STING signaling pathway was activated in <i>S. aureus</i>-infected cells. <i>In vitro</i> investigations demonstrated that inhibiting STING reduced inflammation, hypoxia-inducible factor-1 alpha (HIF1α) expression, and mitochondrial reactive oxygen species (mROS) production. Interestingly, blocking HIF1α eliminated the escalation of inflammation associated with STING. Additionally, suppressing mROS production significantly reduced HIF1α expression and inflammation levels, while elevating mROS had the opposite effect. These results indicate that STING promoted inflammation through the mROS-HIF1α pathway. Given that glycolysis is driven by HIF1α, we investigated the role of glycolysis during infection. As expected, STING-elevated inflammation was linked with HIF1α-driven glycolysis. In terms of pathogenesis, STING contributed to <i>S. aureus</i> proliferation within cells and mouse mammary glands. Collectively, our findings demonstrate that STING facilitates infection via the mROS-HIF1α-glycolysis axis, highlighting its potential as a promising anti-inflammatory target.</p>\",\"PeriodicalId\":13541,\"journal\":{\"name\":\"Infection and Immunity\",\"volume\":\" \",\"pages\":\"e0013825\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150761/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/iai.00138-25\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00138-25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
STING contributes to the inflammation and proliferation of Staphylococcus aureus via mitochondrial reactive oxygen species-hypoxic inducible factor 1α axis in epithelial cells.
Staphylococcus aureus infection poses a serious threat to the dairy industry and public health safety. The stimulator of interferon gene (STING) signaling pathway has been well established as effective in defending against viral infections. However, the role of STING is controversial during bacterial infections. Herein, we provide an insight into the role of STING during S. aureus infection. Our data revealed that the STING signaling pathway was activated in S. aureus-infected cells. In vitro investigations demonstrated that inhibiting STING reduced inflammation, hypoxia-inducible factor-1 alpha (HIF1α) expression, and mitochondrial reactive oxygen species (mROS) production. Interestingly, blocking HIF1α eliminated the escalation of inflammation associated with STING. Additionally, suppressing mROS production significantly reduced HIF1α expression and inflammation levels, while elevating mROS had the opposite effect. These results indicate that STING promoted inflammation through the mROS-HIF1α pathway. Given that glycolysis is driven by HIF1α, we investigated the role of glycolysis during infection. As expected, STING-elevated inflammation was linked with HIF1α-driven glycolysis. In terms of pathogenesis, STING contributed to S. aureus proliferation within cells and mouse mammary glands. Collectively, our findings demonstrate that STING facilitates infection via the mROS-HIF1α-glycolysis axis, highlighting its potential as a promising anti-inflammatory target.
期刊介绍:
Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.