{"title":"重组溶瘤病毒ndv -抗vegfr2通过靶向VEGF信号和损伤DNA修复增强NSCLC的放疗敏感性。","authors":"Liang Liu, Liying Song, Tianyan Liu, Kaiyuan Hui, Chenxi Hu, Jiarui Yang, Xuelei Pi, Yuanyuan Yan, Shishi Liu, Yating Zhang, Hongna Chen, Yukai Cao, Lihua Zhou, Yun Qiao, Dan Yu, Chengkai Yin, Xu Li, Chenfeng Zhang, Deshan Li, Zhenzhong Wang, Zhihang Liu, Xiaodong Jiang","doi":"10.1038/s41434-025-00540-x","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to radiotherapy is a significant challenge in the clinical management of non-small cell lung cancer (NSCLC). This study investigates a novel multimodal therapeutic strategy that combines oncolytic Newcastle disease virus (NDV) with an anti-VEGFR2 single-chain variable fragment (NDV-anti-VEGFR2) to enhance radiosensitivity in NSCLC. We engineered NDV-anti-VEGFR2 and assessed its efficacy in sensitizing Calu-1 cells to radiation. In vitro results demonstrated that NDV-anti-VEGFR2 significantly inhibited tumor cell proliferation when combined with radiotherapy. In vivo experiments revealed that NDV-anti-VEGFR2, combined with radiation, achieved a tumor growth inhibition rate of 86.48%, surpassing the effects of NDV or radiation alone. Mechanistic investigations indicated that NDV-anti-VEGFR2 mitigated hypoxia by downregulating HIF-1α and impaired DNA repair pathways, as evidenced by reduced levels of RAD51 and γ-H2AX. These findings suggest that NDV-anti-VEGFR2 not only normalizes tumor vasculature but also enhances the cytotoxic effects of radiation by compromising DNA repair mechanisms. Collectively, our results support the clinical potential of NDV-anti-VEGFR2 combined with radiotherapy as a promising strategy to overcome radiotherapy resistance in NSCLC. Future studies in immunocompetent models are warranted to elucidate the immune-mediated effects of this innovative therapeutic approach.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant oncolytic virus NDV-anti-VEGFR2 enhances radiotherapy sensitivity in NSCLC by targeting VEGF signaling and impairing DNA repair.\",\"authors\":\"Liang Liu, Liying Song, Tianyan Liu, Kaiyuan Hui, Chenxi Hu, Jiarui Yang, Xuelei Pi, Yuanyuan Yan, Shishi Liu, Yating Zhang, Hongna Chen, Yukai Cao, Lihua Zhou, Yun Qiao, Dan Yu, Chengkai Yin, Xu Li, Chenfeng Zhang, Deshan Li, Zhenzhong Wang, Zhihang Liu, Xiaodong Jiang\",\"doi\":\"10.1038/s41434-025-00540-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resistance to radiotherapy is a significant challenge in the clinical management of non-small cell lung cancer (NSCLC). This study investigates a novel multimodal therapeutic strategy that combines oncolytic Newcastle disease virus (NDV) with an anti-VEGFR2 single-chain variable fragment (NDV-anti-VEGFR2) to enhance radiosensitivity in NSCLC. We engineered NDV-anti-VEGFR2 and assessed its efficacy in sensitizing Calu-1 cells to radiation. In vitro results demonstrated that NDV-anti-VEGFR2 significantly inhibited tumor cell proliferation when combined with radiotherapy. In vivo experiments revealed that NDV-anti-VEGFR2, combined with radiation, achieved a tumor growth inhibition rate of 86.48%, surpassing the effects of NDV or radiation alone. Mechanistic investigations indicated that NDV-anti-VEGFR2 mitigated hypoxia by downregulating HIF-1α and impaired DNA repair pathways, as evidenced by reduced levels of RAD51 and γ-H2AX. These findings suggest that NDV-anti-VEGFR2 not only normalizes tumor vasculature but also enhances the cytotoxic effects of radiation by compromising DNA repair mechanisms. Collectively, our results support the clinical potential of NDV-anti-VEGFR2 combined with radiotherapy as a promising strategy to overcome radiotherapy resistance in NSCLC. Future studies in immunocompetent models are warranted to elucidate the immune-mediated effects of this innovative therapeutic approach.</p>\",\"PeriodicalId\":12699,\"journal\":{\"name\":\"Gene Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41434-025-00540-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-025-00540-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Recombinant oncolytic virus NDV-anti-VEGFR2 enhances radiotherapy sensitivity in NSCLC by targeting VEGF signaling and impairing DNA repair.
Resistance to radiotherapy is a significant challenge in the clinical management of non-small cell lung cancer (NSCLC). This study investigates a novel multimodal therapeutic strategy that combines oncolytic Newcastle disease virus (NDV) with an anti-VEGFR2 single-chain variable fragment (NDV-anti-VEGFR2) to enhance radiosensitivity in NSCLC. We engineered NDV-anti-VEGFR2 and assessed its efficacy in sensitizing Calu-1 cells to radiation. In vitro results demonstrated that NDV-anti-VEGFR2 significantly inhibited tumor cell proliferation when combined with radiotherapy. In vivo experiments revealed that NDV-anti-VEGFR2, combined with radiation, achieved a tumor growth inhibition rate of 86.48%, surpassing the effects of NDV or radiation alone. Mechanistic investigations indicated that NDV-anti-VEGFR2 mitigated hypoxia by downregulating HIF-1α and impaired DNA repair pathways, as evidenced by reduced levels of RAD51 and γ-H2AX. These findings suggest that NDV-anti-VEGFR2 not only normalizes tumor vasculature but also enhances the cytotoxic effects of radiation by compromising DNA repair mechanisms. Collectively, our results support the clinical potential of NDV-anti-VEGFR2 combined with radiotherapy as a promising strategy to overcome radiotherapy resistance in NSCLC. Future studies in immunocompetent models are warranted to elucidate the immune-mediated effects of this innovative therapeutic approach.
期刊介绍:
Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.