Elisa Perez-Moreno, Victoria Ortega-Hernández, Valentina A Zavala, Jorge Gamboa, Wanda Fernández, Pilar Carvallo
{"title":"靶向EMT转录因子的microrna抑制乳腺癌转移行为miR-196a-5p和miR-22-3p参与ZEB1的表达。","authors":"Elisa Perez-Moreno, Victoria Ortega-Hernández, Valentina A Zavala, Jorge Gamboa, Wanda Fernández, Pilar Carvallo","doi":"10.1007/s10549-025-07723-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Metastasis, the leading cause of cancer-associated deaths, is promoted by transcription factors SNAIL, SLUG, ZEB1 and TWIST through the activation of epithelial-mesenchymal transition (EMT). MicroRNAs can suppress EMT, emerging as candidate molecular biomarkers and novel therapeutic targets. Herein, we evaluated microRNAs downregulated in breast cancer (BC) tissues expressing EMT transcription factors, to find new potential regulators of EMT.</p><p><strong>Methods: </strong>Candidate microRNAs were selected from microarray data by their inversely correlated expression with SNAIL, SLUG, ZEB1 and TWIST, evaluated in BC tissues through immunohistochemistry. We selected eight microRNAs predicted in silico as probable modulators of SNAIL, SLUG, ZEB1 and TWIST, and validate their interaction through the 3'UTR region in luciferase reporter gene assays. MDA-MB-231 cells were transfected with selected microRNAs to perform migration, invasion and cell proliferation assays, and western blot was used to evaluate protein levels.</p><p><strong>Results: </strong>MiR-30a-5p, miR-1271-5p, miR-196a-5p, miR-202-3p, miR-210-3p, miR-22-3p and miR-331-3p decreased luciferase activity through SNAIL, SLUG, ZEB1 and/or TWIST 3'UTR. These microRNAs, including miR-34b-3p, decreased migration, invasion and cell proliferation in MDA-MB-231 cells. MiR-30a-5p, miR-202-3p and miR-22-3p decreased vimentin expression, whereas miR-196a-5p and miR-22-3p decreased endogenous ZEB1 levels. MiR-196a-5p, miR-202-3p and miR-30a-5p also decreased CCR7 expression, a chemokine receptor involved in lymph node metastasis.</p><p><strong>Conclusion: </strong>microRNAs selected in this work can regulate gene expression trough 3'UTR region of EMT-transcription factors. In BC cells, miR-196a-5p and miR-22-3p decrease ZEB1 levels, being novel modulators of EMT. Also, the eight evaluated microRNAs, reduced the metastatic hallmarks in BC cells.</p>","PeriodicalId":9133,"journal":{"name":"Breast Cancer Research and Treatment","volume":" ","pages":"277-290"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of breast cancer metastatic behavior by microRNAs targeting EMT transcription factors. A relevant participation of miR-196a-5p and miR-22-3p in ZEB1 expression.\",\"authors\":\"Elisa Perez-Moreno, Victoria Ortega-Hernández, Valentina A Zavala, Jorge Gamboa, Wanda Fernández, Pilar Carvallo\",\"doi\":\"10.1007/s10549-025-07723-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Metastasis, the leading cause of cancer-associated deaths, is promoted by transcription factors SNAIL, SLUG, ZEB1 and TWIST through the activation of epithelial-mesenchymal transition (EMT). MicroRNAs can suppress EMT, emerging as candidate molecular biomarkers and novel therapeutic targets. Herein, we evaluated microRNAs downregulated in breast cancer (BC) tissues expressing EMT transcription factors, to find new potential regulators of EMT.</p><p><strong>Methods: </strong>Candidate microRNAs were selected from microarray data by their inversely correlated expression with SNAIL, SLUG, ZEB1 and TWIST, evaluated in BC tissues through immunohistochemistry. We selected eight microRNAs predicted in silico as probable modulators of SNAIL, SLUG, ZEB1 and TWIST, and validate their interaction through the 3'UTR region in luciferase reporter gene assays. MDA-MB-231 cells were transfected with selected microRNAs to perform migration, invasion and cell proliferation assays, and western blot was used to evaluate protein levels.</p><p><strong>Results: </strong>MiR-30a-5p, miR-1271-5p, miR-196a-5p, miR-202-3p, miR-210-3p, miR-22-3p and miR-331-3p decreased luciferase activity through SNAIL, SLUG, ZEB1 and/or TWIST 3'UTR. These microRNAs, including miR-34b-3p, decreased migration, invasion and cell proliferation in MDA-MB-231 cells. MiR-30a-5p, miR-202-3p and miR-22-3p decreased vimentin expression, whereas miR-196a-5p and miR-22-3p decreased endogenous ZEB1 levels. MiR-196a-5p, miR-202-3p and miR-30a-5p also decreased CCR7 expression, a chemokine receptor involved in lymph node metastasis.</p><p><strong>Conclusion: </strong>microRNAs selected in this work can regulate gene expression trough 3'UTR region of EMT-transcription factors. In BC cells, miR-196a-5p and miR-22-3p decrease ZEB1 levels, being novel modulators of EMT. Also, the eight evaluated microRNAs, reduced the metastatic hallmarks in BC cells.</p>\",\"PeriodicalId\":9133,\"journal\":{\"name\":\"Breast Cancer Research and Treatment\",\"volume\":\" \",\"pages\":\"277-290\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research and Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10549-025-07723-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10549-025-07723-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Suppression of breast cancer metastatic behavior by microRNAs targeting EMT transcription factors. A relevant participation of miR-196a-5p and miR-22-3p in ZEB1 expression.
Purpose: Metastasis, the leading cause of cancer-associated deaths, is promoted by transcription factors SNAIL, SLUG, ZEB1 and TWIST through the activation of epithelial-mesenchymal transition (EMT). MicroRNAs can suppress EMT, emerging as candidate molecular biomarkers and novel therapeutic targets. Herein, we evaluated microRNAs downregulated in breast cancer (BC) tissues expressing EMT transcription factors, to find new potential regulators of EMT.
Methods: Candidate microRNAs were selected from microarray data by their inversely correlated expression with SNAIL, SLUG, ZEB1 and TWIST, evaluated in BC tissues through immunohistochemistry. We selected eight microRNAs predicted in silico as probable modulators of SNAIL, SLUG, ZEB1 and TWIST, and validate their interaction through the 3'UTR region in luciferase reporter gene assays. MDA-MB-231 cells were transfected with selected microRNAs to perform migration, invasion and cell proliferation assays, and western blot was used to evaluate protein levels.
Results: MiR-30a-5p, miR-1271-5p, miR-196a-5p, miR-202-3p, miR-210-3p, miR-22-3p and miR-331-3p decreased luciferase activity through SNAIL, SLUG, ZEB1 and/or TWIST 3'UTR. These microRNAs, including miR-34b-3p, decreased migration, invasion and cell proliferation in MDA-MB-231 cells. MiR-30a-5p, miR-202-3p and miR-22-3p decreased vimentin expression, whereas miR-196a-5p and miR-22-3p decreased endogenous ZEB1 levels. MiR-196a-5p, miR-202-3p and miR-30a-5p also decreased CCR7 expression, a chemokine receptor involved in lymph node metastasis.
Conclusion: microRNAs selected in this work can regulate gene expression trough 3'UTR region of EMT-transcription factors. In BC cells, miR-196a-5p and miR-22-3p decrease ZEB1 levels, being novel modulators of EMT. Also, the eight evaluated microRNAs, reduced the metastatic hallmarks in BC cells.
期刊介绍:
Breast Cancer Research and Treatment provides the surgeon, radiotherapist, medical oncologist, endocrinologist, epidemiologist, immunologist or cell biologist investigating problems in breast cancer a single forum for communication. The journal creates a "market place" for breast cancer topics which cuts across all the usual lines of disciplines, providing a site for presenting pertinent investigations, and for discussing critical questions relevant to the entire field. It seeks to develop a new focus and new perspectives for all those concerned with breast cancer.