Yiwen Jiang, Lingxi Jiang, Zhongwei Yang, Xiaolin Liu, Yaoyao Wang, Man Ying, He Huang, Yiren Xu, Hang Zhou, Jincui Huang, Xuejun Gu, Weichang Zhou, Ying Huang
{"title":"加速利用中国仓鼠卵巢细胞稳定库或克隆库的蛋白质产品进行ind毒理学研究。","authors":"Yiwen Jiang, Lingxi Jiang, Zhongwei Yang, Xiaolin Liu, Yaoyao Wang, Man Ying, He Huang, Yiren Xu, Hang Zhou, Jincui Huang, Xuejun Gu, Weichang Zhou, Ying Huang","doi":"10.1002/btpr.70040","DOIUrl":null,"url":null,"abstract":"<p>In recent years, accelerating Chemistry, Manufacturing, and Controls (CMC) workflows for clinical entry has become a critical focus in biologics development. Advances in the development of cell lines, cell culture processes, and analytical technologies have enabled the generation of more homogeneous stable pool populations with increased productivity. Leveraging the experience gained from the COVID-19 product development, the strategic use of stable cell pools or a pool of clones for early-stage non-GMP material generation and process development has proven transformative in significantly reducing the CMC timeline to investigational new drug (IND). This study provides a comprehensive comparison of bioprocess performance and product quality attributes of materials produced from stable pools or a pool of clones (toxicology study materials) versus those from clonally derived cells (GMP clinical batches) across six First-in-Human (FIH) programs involving mAbs, bsAb, and Fc-fusion proteins. The results demonstrate a strong alignment and the feasibility of using protein materials from stable pools or a pool of clones in toxicology studies. In conclusion, utilizing non-clonal CHO cell-derived material for preclinical studies offers a strategic approach that can be broadly applied to complex molecules across various disease areas, even under standard regulatory filings, accelerating the path to clinical trials.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"41 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating IND-enabling toxicology studies using protein products from stable pools or pools of clones in Chinese hamster ovary cells\",\"authors\":\"Yiwen Jiang, Lingxi Jiang, Zhongwei Yang, Xiaolin Liu, Yaoyao Wang, Man Ying, He Huang, Yiren Xu, Hang Zhou, Jincui Huang, Xuejun Gu, Weichang Zhou, Ying Huang\",\"doi\":\"10.1002/btpr.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, accelerating Chemistry, Manufacturing, and Controls (CMC) workflows for clinical entry has become a critical focus in biologics development. Advances in the development of cell lines, cell culture processes, and analytical technologies have enabled the generation of more homogeneous stable pool populations with increased productivity. Leveraging the experience gained from the COVID-19 product development, the strategic use of stable cell pools or a pool of clones for early-stage non-GMP material generation and process development has proven transformative in significantly reducing the CMC timeline to investigational new drug (IND). This study provides a comprehensive comparison of bioprocess performance and product quality attributes of materials produced from stable pools or a pool of clones (toxicology study materials) versus those from clonally derived cells (GMP clinical batches) across six First-in-Human (FIH) programs involving mAbs, bsAb, and Fc-fusion proteins. The results demonstrate a strong alignment and the feasibility of using protein materials from stable pools or a pool of clones in toxicology studies. In conclusion, utilizing non-clonal CHO cell-derived material for preclinical studies offers a strategic approach that can be broadly applied to complex molecules across various disease areas, even under standard regulatory filings, accelerating the path to clinical trials.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.70040\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.70040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Accelerating IND-enabling toxicology studies using protein products from stable pools or pools of clones in Chinese hamster ovary cells
In recent years, accelerating Chemistry, Manufacturing, and Controls (CMC) workflows for clinical entry has become a critical focus in biologics development. Advances in the development of cell lines, cell culture processes, and analytical technologies have enabled the generation of more homogeneous stable pool populations with increased productivity. Leveraging the experience gained from the COVID-19 product development, the strategic use of stable cell pools or a pool of clones for early-stage non-GMP material generation and process development has proven transformative in significantly reducing the CMC timeline to investigational new drug (IND). This study provides a comprehensive comparison of bioprocess performance and product quality attributes of materials produced from stable pools or a pool of clones (toxicology study materials) versus those from clonally derived cells (GMP clinical batches) across six First-in-Human (FIH) programs involving mAbs, bsAb, and Fc-fusion proteins. The results demonstrate a strong alignment and the feasibility of using protein materials from stable pools or a pool of clones in toxicology studies. In conclusion, utilizing non-clonal CHO cell-derived material for preclinical studies offers a strategic approach that can be broadly applied to complex molecules across various disease areas, even under standard regulatory filings, accelerating the path to clinical trials.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.