{"title":"转运RNA和tRNA假尿嘧啶合酶中的假尿嘧啶修饰。","authors":"Chie Tomikawa","doi":"10.1016/j.jmb.2025.169183","DOIUrl":null,"url":null,"abstract":"<div><div>Among the various modifications found in transfer RNAs, pseudouridine occurs the most frequently in all organisms and is also found in other RNA species including ribosomal, messenger, small nuclear, small nucleolar, and transfer-messenger RNA. Since the first gene encoding a tRNA pseudouridine synthase (<em>truA</em>) was discovered in 1978, many pseudouridine synthases have been identified, some of which are specific for one site in tRNA, while others act at multiple sites. Furthermore, some enzymes catalyze pseudouridine modification of not only tRNA but also ribosomal RNA and small nuclear RNA or messenger RNA. The functions of pseudouridine in tRNA are diverse, from contributing to the stabilization of tRNA structure to having an essential role in accurate protein synthesis (deficiency induces a frameshift in some cases). Some pseudouridine synthases also function as RNA chaperones. In this review, I summarize the reaction mechanism and functions of pseudouridine synthases with reference to the six pseudouridine synthase families, including similarities and variations in domain structures, motifs, and target uracil bases. I also characterize individual enzymes and highlight recently revealed links between pseudouridine/pseudouridine synthases and viral infections and human diseases.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 16","pages":"Article 169183"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudouridine Modifications in Transfer RNA and tRNA Pseudouridine Synthases\",\"authors\":\"Chie Tomikawa\",\"doi\":\"10.1016/j.jmb.2025.169183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Among the various modifications found in transfer RNAs, pseudouridine occurs the most frequently in all organisms and is also found in other RNA species including ribosomal, messenger, small nuclear, small nucleolar, and transfer-messenger RNA. Since the first gene encoding a tRNA pseudouridine synthase (<em>truA</em>) was discovered in 1978, many pseudouridine synthases have been identified, some of which are specific for one site in tRNA, while others act at multiple sites. Furthermore, some enzymes catalyze pseudouridine modification of not only tRNA but also ribosomal RNA and small nuclear RNA or messenger RNA. The functions of pseudouridine in tRNA are diverse, from contributing to the stabilization of tRNA structure to having an essential role in accurate protein synthesis (deficiency induces a frameshift in some cases). Some pseudouridine synthases also function as RNA chaperones. In this review, I summarize the reaction mechanism and functions of pseudouridine synthases with reference to the six pseudouridine synthase families, including similarities and variations in domain structures, motifs, and target uracil bases. I also characterize individual enzymes and highlight recently revealed links between pseudouridine/pseudouridine synthases and viral infections and human diseases.</div></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"437 16\",\"pages\":\"Article 169183\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283625002499\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625002499","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pseudouridine Modifications in Transfer RNA and tRNA Pseudouridine Synthases
Among the various modifications found in transfer RNAs, pseudouridine occurs the most frequently in all organisms and is also found in other RNA species including ribosomal, messenger, small nuclear, small nucleolar, and transfer-messenger RNA. Since the first gene encoding a tRNA pseudouridine synthase (truA) was discovered in 1978, many pseudouridine synthases have been identified, some of which are specific for one site in tRNA, while others act at multiple sites. Furthermore, some enzymes catalyze pseudouridine modification of not only tRNA but also ribosomal RNA and small nuclear RNA or messenger RNA. The functions of pseudouridine in tRNA are diverse, from contributing to the stabilization of tRNA structure to having an essential role in accurate protein synthesis (deficiency induces a frameshift in some cases). Some pseudouridine synthases also function as RNA chaperones. In this review, I summarize the reaction mechanism and functions of pseudouridine synthases with reference to the six pseudouridine synthase families, including similarities and variations in domain structures, motifs, and target uracil bases. I also characterize individual enzymes and highlight recently revealed links between pseudouridine/pseudouridine synthases and viral infections and human diseases.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.