Neeraj Kumar Shrivastava, Pratibha Verma, Garima Singh, Jyoti Singh, Anurag Kumar, Sneha Yadav, Archana Bharti Sonkar, Mohd Nazam Ansari, Abdulaziz S Saeedan, Yusuf Akhter, Sara A Aldossary, Gaurav Kaithwas
{"title":"优化靶向HIF-1α的siRNA疗法:计算设计、筛选和分子动力学模拟研究。","authors":"Neeraj Kumar Shrivastava, Pratibha Verma, Garima Singh, Jyoti Singh, Anurag Kumar, Sneha Yadav, Archana Bharti Sonkar, Mohd Nazam Ansari, Abdulaziz S Saeedan, Yusuf Akhter, Sara A Aldossary, Gaurav Kaithwas","doi":"10.1021/acs.molpharmaceut.5c00104","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia-inducible factor-1 alpha (HIF-1α) is an important transcription factor regulating glycolysis, angiogenesis, metastasis, and erythropoiesis under hypoxic conditions in solid tumors. Small interfering RNAs (siRNAs) have emerged as a promising therapeutic approach for solid tumors by selectively silencing target genes. This study explored siRNA-mediated degradation of HIF-1α by specifically targeting HIF-1α mRNA. We retrieved the HIF-1α gene sequence from the database and used various computational tools like siDirect and OligoWalk to get potential 19-21nts long siRNAs. Furthermore, these siRNAs were screened using parameters like sequence specificity, BLASTn, secondary structure formation, GC content, binding affinity between siRNA and mRNA, and thermodynamic properties. The potential siRNAs were further evaluated through molecular docking studies for interaction with the human Argonaute-2 protein (hAgo2), followed by molecular dynamics simulation studies. Post-MD studies revealed S4 (5'UAUAUGGUGAUGAUGUGGC3') as the most potential siRNA candidate against HIF-1α, based on root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and H-bond analysis. Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) analysis was also performed to further validate the selected siRNA candidates, which further affirmed S4 (5'UAUAUGGUGAUGAUGUGGC3') as a potential candidate against HIF-1α.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"3179-3188"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing siRNA Therapeutics Targeting HIF-1α: Computational Design, Screening, and Molecular Dynamics Simulation Studies.\",\"authors\":\"Neeraj Kumar Shrivastava, Pratibha Verma, Garima Singh, Jyoti Singh, Anurag Kumar, Sneha Yadav, Archana Bharti Sonkar, Mohd Nazam Ansari, Abdulaziz S Saeedan, Yusuf Akhter, Sara A Aldossary, Gaurav Kaithwas\",\"doi\":\"10.1021/acs.molpharmaceut.5c00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxia-inducible factor-1 alpha (HIF-1α) is an important transcription factor regulating glycolysis, angiogenesis, metastasis, and erythropoiesis under hypoxic conditions in solid tumors. Small interfering RNAs (siRNAs) have emerged as a promising therapeutic approach for solid tumors by selectively silencing target genes. This study explored siRNA-mediated degradation of HIF-1α by specifically targeting HIF-1α mRNA. We retrieved the HIF-1α gene sequence from the database and used various computational tools like siDirect and OligoWalk to get potential 19-21nts long siRNAs. Furthermore, these siRNAs were screened using parameters like sequence specificity, BLASTn, secondary structure formation, GC content, binding affinity between siRNA and mRNA, and thermodynamic properties. The potential siRNAs were further evaluated through molecular docking studies for interaction with the human Argonaute-2 protein (hAgo2), followed by molecular dynamics simulation studies. Post-MD studies revealed S4 (5'UAUAUGGUGAUGAUGUGGC3') as the most potential siRNA candidate against HIF-1α, based on root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and H-bond analysis. Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) analysis was also performed to further validate the selected siRNA candidates, which further affirmed S4 (5'UAUAUGGUGAUGAUGUGGC3') as a potential candidate against HIF-1α.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"3179-3188\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.5c00104\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00104","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Hypoxia-inducible factor-1 alpha (HIF-1α) is an important transcription factor regulating glycolysis, angiogenesis, metastasis, and erythropoiesis under hypoxic conditions in solid tumors. Small interfering RNAs (siRNAs) have emerged as a promising therapeutic approach for solid tumors by selectively silencing target genes. This study explored siRNA-mediated degradation of HIF-1α by specifically targeting HIF-1α mRNA. We retrieved the HIF-1α gene sequence from the database and used various computational tools like siDirect and OligoWalk to get potential 19-21nts long siRNAs. Furthermore, these siRNAs were screened using parameters like sequence specificity, BLASTn, secondary structure formation, GC content, binding affinity between siRNA and mRNA, and thermodynamic properties. The potential siRNAs were further evaluated through molecular docking studies for interaction with the human Argonaute-2 protein (hAgo2), followed by molecular dynamics simulation studies. Post-MD studies revealed S4 (5'UAUAUGGUGAUGAUGUGGC3') as the most potential siRNA candidate against HIF-1α, based on root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and H-bond analysis. Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) analysis was also performed to further validate the selected siRNA candidates, which further affirmed S4 (5'UAUAUGGUGAUGAUGUGGC3') as a potential candidate against HIF-1α.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.