Muhammad Asif Javed, Muhammad Ahsan Ishtiaq, Abuzar Ghaffari, Hafiz Muhammad Atif, Wafa F. Alfwzan, Emad E. Mahmoud
{"title":"带滑移效应的Bingham塑性流体叶片涂层的非等温分析","authors":"Muhammad Asif Javed, Muhammad Ahsan Ishtiaq, Abuzar Ghaffari, Hafiz Muhammad Atif, Wafa F. Alfwzan, Emad E. Mahmoud","doi":"10.1002/mats.202500012","DOIUrl":null,"url":null,"abstract":"<p>Blade coating is a process in which a fluid is applied to a surface using a fixed blade, offering economic benefits over other coating techniques. It is commonly employed in paper production, information preservation, and the manufacturing of photographic films and magnetic storage devices. This article explores the non-isothermal blade coating process using the Bingham plastic fluid model with non-linear slip effects. The 2D incompressible flow in the blade coating process is modeled with conjunction of the continuity, momentum, and energy equations. The modeled flow equations are converted into the dimensionless using dimensionless variables and parameters. The simplified non-linear differential equations are solved numerically using boundary value problem fourth order collocation (bvp4c) method. This work explores how changes in physical parameters affect flow characteristics and mechanical properties of the blade coating process are investigated with the help of various graphs and tables. It is observed that the pressure and velocity of the molten polymer increase with increasing the values of the Bingham plastic parameter. It is also observed, when the value of the slip parameter is (<span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <mn>0.8</mn>\n <mo>)</mo>\n <mo>,</mo>\n </mrow>\n <annotation>$\\gamma = 0.8),$</annotation>\n </semantics></math> the coating thickness increased by 41.6279<i>%</i> (for plane coater) and 53.4030<i>%</i> (for exponential coater), and blade load force decreased by 14.2272<i>%</i> (for plane coater) and 15.0107<i>%</i> (for exponential coater) form the Newtonian values.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Isothermal Analysis of the Blade Coating Using Bingham Plastic Fluid with Slip Effects\",\"authors\":\"Muhammad Asif Javed, Muhammad Ahsan Ishtiaq, Abuzar Ghaffari, Hafiz Muhammad Atif, Wafa F. Alfwzan, Emad E. Mahmoud\",\"doi\":\"10.1002/mats.202500012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Blade coating is a process in which a fluid is applied to a surface using a fixed blade, offering economic benefits over other coating techniques. It is commonly employed in paper production, information preservation, and the manufacturing of photographic films and magnetic storage devices. This article explores the non-isothermal blade coating process using the Bingham plastic fluid model with non-linear slip effects. The 2D incompressible flow in the blade coating process is modeled with conjunction of the continuity, momentum, and energy equations. The modeled flow equations are converted into the dimensionless using dimensionless variables and parameters. The simplified non-linear differential equations are solved numerically using boundary value problem fourth order collocation (bvp4c) method. This work explores how changes in physical parameters affect flow characteristics and mechanical properties of the blade coating process are investigated with the help of various graphs and tables. It is observed that the pressure and velocity of the molten polymer increase with increasing the values of the Bingham plastic parameter. It is also observed, when the value of the slip parameter is (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>=</mo>\\n <mn>0.8</mn>\\n <mo>)</mo>\\n <mo>,</mo>\\n </mrow>\\n <annotation>$\\\\gamma = 0.8),$</annotation>\\n </semantics></math> the coating thickness increased by 41.6279<i>%</i> (for plane coater) and 53.4030<i>%</i> (for exponential coater), and blade load force decreased by 14.2272<i>%</i> (for plane coater) and 15.0107<i>%</i> (for exponential coater) form the Newtonian values.</p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":\"34 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202500012\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202500012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Non-Isothermal Analysis of the Blade Coating Using Bingham Plastic Fluid with Slip Effects
Blade coating is a process in which a fluid is applied to a surface using a fixed blade, offering economic benefits over other coating techniques. It is commonly employed in paper production, information preservation, and the manufacturing of photographic films and magnetic storage devices. This article explores the non-isothermal blade coating process using the Bingham plastic fluid model with non-linear slip effects. The 2D incompressible flow in the blade coating process is modeled with conjunction of the continuity, momentum, and energy equations. The modeled flow equations are converted into the dimensionless using dimensionless variables and parameters. The simplified non-linear differential equations are solved numerically using boundary value problem fourth order collocation (bvp4c) method. This work explores how changes in physical parameters affect flow characteristics and mechanical properties of the blade coating process are investigated with the help of various graphs and tables. It is observed that the pressure and velocity of the molten polymer increase with increasing the values of the Bingham plastic parameter. It is also observed, when the value of the slip parameter is ( the coating thickness increased by 41.6279% (for plane coater) and 53.4030% (for exponential coater), and blade load force decreased by 14.2272% (for plane coater) and 15.0107% (for exponential coater) form the Newtonian values.
期刊介绍:
Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.