具有杰出理想的无原子布尔代数的同构

IF 0.4 3区 数学 Q4 LOGIC
S. S. Goncharov, J. Xiang
{"title":"具有杰出理想的无原子布尔代数的同构","authors":"S. S. Goncharov,&nbsp;J. Xiang","doi":"10.1007/s10469-025-09781-6","DOIUrl":null,"url":null,"abstract":"<p>An algebraic, model-theoretic, and algorithmic theory of enriched Boolean algebras with distinguished ideals was developed in a series of papers by D. E. Pal’chunov, A. Touraille, P. E. Alaev, N. T. Kogabaev, and other authors. Here we study the problem on the number of countable Boolean algebras with distinguished ideals for the case when an algebra and its quotient with respect to a distinguished ideal are atomless. It is proved that, for this subclass, there exist continuum many such countable structures.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"63 3","pages":"179 - 185"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isomorphism of Atomless Boolean Algebras with Distinguished Ideals\",\"authors\":\"S. S. Goncharov,&nbsp;J. Xiang\",\"doi\":\"10.1007/s10469-025-09781-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An algebraic, model-theoretic, and algorithmic theory of enriched Boolean algebras with distinguished ideals was developed in a series of papers by D. E. Pal’chunov, A. Touraille, P. E. Alaev, N. T. Kogabaev, and other authors. Here we study the problem on the number of countable Boolean algebras with distinguished ideals for the case when an algebra and its quotient with respect to a distinguished ideal are atomless. It is proved that, for this subclass, there exist continuum many such countable structures.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"63 3\",\"pages\":\"179 - 185\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-025-09781-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-025-09781-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

D. E. Pal 'chunov, a . Touraille, P. E. Alaev, N. T. Kogabaev和其他作者在一系列论文中发展了具有杰出理想的富布尔代数的代数、模型论和算法理论。本文研究了当一个代数及其商相对于一个可分辨理想是无原子的情况下,具有可分辨理想的可数布尔代数的个数问题。证明了对于这个子类,存在连续的许多这样的可数结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isomorphism of Atomless Boolean Algebras with Distinguished Ideals

An algebraic, model-theoretic, and algorithmic theory of enriched Boolean algebras with distinguished ideals was developed in a series of papers by D. E. Pal’chunov, A. Touraille, P. E. Alaev, N. T. Kogabaev, and other authors. Here we study the problem on the number of countable Boolean algebras with distinguished ideals for the case when an algebra and its quotient with respect to a distinguished ideal are atomless. It is proved that, for this subclass, there exist continuum many such countable structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信