Wielandt𝔛-子组

IF 0.4 3区 数学 Q4 LOGIC
D. O. Revin
{"title":"Wielandt𝔛-子组","authors":"D. O. Revin","doi":"10.1007/s10469-025-09784-3","DOIUrl":null,"url":null,"abstract":"<p>Let 𝔛 be a nonempty class of finite groups closed under taking subgroups, homomorphic images, and extensions. We define the concept of a Wielandt 𝔛 -subgroup in an arbitrary finite group. It generalizes the concept of a submaximal 𝔛 -subgroup introduced by H. Wielandt and is key in the framework of a program proposed by Wielandt in 1979. One of the central objectives of the program is to overcome difficulties associated with the reduction to factors of a subnormal series within the natural problem of searching for maximal 𝔛 -subgroups. Wielandt 𝔛 -subgroups possess a number of properties unshareable by submaximal 𝔛 -subgroups. There is a hope that, due to these additional properties, the use of Wielandt 𝔛 -subgroups will open up new possibilities in realizing Wielandt’s program.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"63 3","pages":"201 - 216"},"PeriodicalIF":0.4000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wielandt 𝔛 -Subgroups\",\"authors\":\"D. O. Revin\",\"doi\":\"10.1007/s10469-025-09784-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let 𝔛 be a nonempty class of finite groups closed under taking subgroups, homomorphic images, and extensions. We define the concept of a Wielandt 𝔛 -subgroup in an arbitrary finite group. It generalizes the concept of a submaximal 𝔛 -subgroup introduced by H. Wielandt and is key in the framework of a program proposed by Wielandt in 1979. One of the central objectives of the program is to overcome difficulties associated with the reduction to factors of a subnormal series within the natural problem of searching for maximal 𝔛 -subgroups. Wielandt 𝔛 -subgroups possess a number of properties unshareable by submaximal 𝔛 -subgroups. There is a hope that, due to these additional properties, the use of Wielandt 𝔛 -subgroups will open up new possibilities in realizing Wielandt’s program.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"63 3\",\"pages\":\"201 - 216\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-025-09784-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-025-09784-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

设𝔛是一个有限群的非空类,该类闭于取子群、同态象和扩展。我们定义了任意有限群中的Wielandt𝔛-子群的概念。它推广了H. Wielandt引入的次极大𝔛-子群的概念,是1979年由Wielandt提出的一个方案框架的关键。该方案的中心目标之一是克服在寻找最大𝔛-子群的自然问题中与次正规序列的因子化简有关的困难。Wielandt𝔛-子组具有许多次极大𝔛-子组不能共享的属性。由于这些额外的属性,使用Wielandt𝔛-子组将为实现Wielandt的程序开辟新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wielandt 𝔛 -Subgroups

Let 𝔛 be a nonempty class of finite groups closed under taking subgroups, homomorphic images, and extensions. We define the concept of a Wielandt 𝔛 -subgroup in an arbitrary finite group. It generalizes the concept of a submaximal 𝔛 -subgroup introduced by H. Wielandt and is key in the framework of a program proposed by Wielandt in 1979. One of the central objectives of the program is to overcome difficulties associated with the reduction to factors of a subnormal series within the natural problem of searching for maximal 𝔛 -subgroups. Wielandt 𝔛 -subgroups possess a number of properties unshareable by submaximal 𝔛 -subgroups. There is a hope that, due to these additional properties, the use of Wielandt 𝔛 -subgroups will open up new possibilities in realizing Wielandt’s program.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信