cea -算子和Ershov层次。我

IF 0.4 3区 数学 Q4 LOGIC
M. M. Arslanov, I. I. Batyrshin, M. M. Yamaleev
{"title":"cea -算子和Ershov层次。我","authors":"M. M. Arslanov,&nbsp;I. I. Batyrshin,&nbsp;M. M. Yamaleev","doi":"10.1007/s10469-025-09780-7","DOIUrl":null,"url":null,"abstract":"<p>We consider the relationship between the CEA-hierarchy and the Ershov hierarchy in <span>\\({\\Delta }_{2}^{0}\\)</span> Turing degrees. A degree <b>c</b> is called CEA(<b>a</b>) if <b>c</b> is computably enumerable in <b>a</b>, and <b>a</b> ≤ <b>c</b>. Soare and Stob [Stud. Logic Found. Math., <b>107</b>, 299-324 (1982)] proved that for a noncomputable low c.e. degree <b>a</b> there exists a CEA(<b>a</b>) degree that is not c.e. Later, Arslanov, Lempp, and Shore [Ann. Pure Appl. Logic, <b>78</b>, Nos. 1-3, 29-56 (1996)] formulated the problem of describing pairs of degrees <b>a</b> &lt; <b>e</b> such that there exists a CEA(<b>a</b>) 2-c.e. degree <b>d</b> ≤ <b>e</b> which is not c.e. Since then the question has remained open as to whether a CEA(<b>a</b>) degree in the sense of Soare and Stob can be made 2-c.e. Here we answer this question in the negative, solving it in a stronger formulation: there exists a noncomputable low c.e. degree <b>a</b> such that any CEA(<b>a</b>) ω-c.e. degree is c.e. Also possible generalizations of the result obtained are discussed, as well as various issues associated with the problem mentioned.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"63 3","pages":"164 - 178"},"PeriodicalIF":0.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CEA-Operators and the Ershov Hierarchy. I\",\"authors\":\"M. M. Arslanov,&nbsp;I. I. Batyrshin,&nbsp;M. M. Yamaleev\",\"doi\":\"10.1007/s10469-025-09780-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the relationship between the CEA-hierarchy and the Ershov hierarchy in <span>\\\\({\\\\Delta }_{2}^{0}\\\\)</span> Turing degrees. A degree <b>c</b> is called CEA(<b>a</b>) if <b>c</b> is computably enumerable in <b>a</b>, and <b>a</b> ≤ <b>c</b>. Soare and Stob [Stud. Logic Found. Math., <b>107</b>, 299-324 (1982)] proved that for a noncomputable low c.e. degree <b>a</b> there exists a CEA(<b>a</b>) degree that is not c.e. Later, Arslanov, Lempp, and Shore [Ann. Pure Appl. Logic, <b>78</b>, Nos. 1-3, 29-56 (1996)] formulated the problem of describing pairs of degrees <b>a</b> &lt; <b>e</b> such that there exists a CEA(<b>a</b>) 2-c.e. degree <b>d</b> ≤ <b>e</b> which is not c.e. Since then the question has remained open as to whether a CEA(<b>a</b>) degree in the sense of Soare and Stob can be made 2-c.e. Here we answer this question in the negative, solving it in a stronger formulation: there exists a noncomputable low c.e. degree <b>a</b> such that any CEA(<b>a</b>) ω-c.e. degree is c.e. Also possible generalizations of the result obtained are discussed, as well as various issues associated with the problem mentioned.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"63 3\",\"pages\":\"164 - 178\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-025-09780-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-025-09780-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在\({\Delta }_{2}^{0}\)图灵度中cea -层次和Ershov层次之间的关系。如果c在A中可计算枚举,且A≤c,则称度c为CEA(A)。逻辑发现。数学。[j]、[j]、[j]、[j],证明了对于一个不可计算的低c.e.度a,存在一个不c.e.的CEA(a)度。纯苹果。逻辑,78,no . 1-3, 29-56(1996)]表述了描述度对的问题a &lt;因此存在CEA(a) 2- ce。度d≤e,不是c.e.。从那时起,关于Soare和Stob意义上的CEA(a)度是否可以构成2-c.e.的问题一直没有解决。在这里,我们以否定的形式回答这个问题,用一个更强的公式来解决它:存在一个不可计算的低c.e.度a,使得任何CEA(a) ω-c.e.。此外,还讨论了所得结果的可能概括,以及与所提到的问题相关的各种问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CEA-Operators and the Ershov Hierarchy. I

We consider the relationship between the CEA-hierarchy and the Ershov hierarchy in \({\Delta }_{2}^{0}\) Turing degrees. A degree c is called CEA(a) if c is computably enumerable in a, and ac. Soare and Stob [Stud. Logic Found. Math., 107, 299-324 (1982)] proved that for a noncomputable low c.e. degree a there exists a CEA(a) degree that is not c.e. Later, Arslanov, Lempp, and Shore [Ann. Pure Appl. Logic, 78, Nos. 1-3, 29-56 (1996)] formulated the problem of describing pairs of degrees a < e such that there exists a CEA(a) 2-c.e. degree de which is not c.e. Since then the question has remained open as to whether a CEA(a) degree in the sense of Soare and Stob can be made 2-c.e. Here we answer this question in the negative, solving it in a stronger formulation: there exists a noncomputable low c.e. degree a such that any CEA(a) ω-c.e. degree is c.e. Also possible generalizations of the result obtained are discussed, as well as various issues associated with the problem mentioned.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信