连通的伪有限元

IF 0.4 3区 数学 Q4 LOGIC
E. L. Efremov, A. A. Stepanova, S. G. Chekanov
{"title":"连通的伪有限元","authors":"E. L. Efremov,&nbsp;A. A. Stepanova,&nbsp;S. G. Chekanov","doi":"10.1007/s10469-025-09782-5","DOIUrl":null,"url":null,"abstract":"<p>We start studying the structure of pseudofinite unars. Necessary (sufficient) conditions of being pseudofinite are formulated for connected unars without cycles, containing no chains, and we give examples showing that these conditions are not sufficient (resp. necessary). It is noted that a coproduct of chains is a pseudofinite unar; in particular, a chain is a pseudofinite unar. A nonpseudofinite unar without cycles, containing exactly one chain is exemplified. For connected unars without cycles, containing two chains, we formulate a necessary condition of being pseudofinite and give an example of a nonpseudofinite unar.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"63 3","pages":"186 - 194"},"PeriodicalIF":0.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connected Pseudofinite Unars\",\"authors\":\"E. L. Efremov,&nbsp;A. A. Stepanova,&nbsp;S. G. Chekanov\",\"doi\":\"10.1007/s10469-025-09782-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We start studying the structure of pseudofinite unars. Necessary (sufficient) conditions of being pseudofinite are formulated for connected unars without cycles, containing no chains, and we give examples showing that these conditions are not sufficient (resp. necessary). It is noted that a coproduct of chains is a pseudofinite unar; in particular, a chain is a pseudofinite unar. A nonpseudofinite unar without cycles, containing exactly one chain is exemplified. For connected unars without cycles, containing two chains, we formulate a necessary condition of being pseudofinite and give an example of a nonpseudofinite unar.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"63 3\",\"pages\":\"186 - 194\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-025-09782-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-025-09782-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们开始研究伪有限元的结构。给出了无环、不含链的连通月亮的赝有限的充分必要条件,并给出了这些条件不充分的例子。必要的)。注意到链的副积是一个伪有限月元;特别地,链是一个伪有限月元。给出了一个只包含一条链的无环非拟有限月。对于含两条链的无环连通月元,给出了其伪有限的一个必要条件,并给出了一个非伪有限月元的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connected Pseudofinite Unars

We start studying the structure of pseudofinite unars. Necessary (sufficient) conditions of being pseudofinite are formulated for connected unars without cycles, containing no chains, and we give examples showing that these conditions are not sufficient (resp. necessary). It is noted that a coproduct of chains is a pseudofinite unar; in particular, a chain is a pseudofinite unar. A nonpseudofinite unar without cycles, containing exactly one chain is exemplified. For connected unars without cycles, containing two chains, we formulate a necessary condition of being pseudofinite and give an example of a nonpseudofinite unar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信