多位错环的离散位错动力学

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Stefania Patrizi, Mary Vaughan
{"title":"多位错环的离散位错动力学","authors":"Stefania Patrizi,&nbsp;Mary Vaughan","doi":"10.1007/s00205-025-02108-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a nonlocal reaction-diffusion equation that physically arises from the classical Peierls–Nabarro model for dislocations in crystalline structures. Our initial configuration corresponds to multiple slip loop dislocations in <span>\\(\\mathbb {R}^n\\)</span>, <span>\\(n \\ge 2\\)</span>. After suitably rescaling the equation with a small phase parameter <span>\\(\\varepsilon &gt;0\\)</span>, the rescaled solution solves a fractional Allen–Cahn equation. We show that, as <span>\\(\\varepsilon \\rightarrow 0\\)</span>, the limiting solution exhibits multiple interfaces evolving independently and according to their mean curvature.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Discrete Dislocation Dynamics of Multiple Dislocation Loops\",\"authors\":\"Stefania Patrizi,&nbsp;Mary Vaughan\",\"doi\":\"10.1007/s00205-025-02108-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a nonlocal reaction-diffusion equation that physically arises from the classical Peierls–Nabarro model for dislocations in crystalline structures. Our initial configuration corresponds to multiple slip loop dislocations in <span>\\\\(\\\\mathbb {R}^n\\\\)</span>, <span>\\\\(n \\\\ge 2\\\\)</span>. After suitably rescaling the equation with a small phase parameter <span>\\\\(\\\\varepsilon &gt;0\\\\)</span>, the rescaled solution solves a fractional Allen–Cahn equation. We show that, as <span>\\\\(\\\\varepsilon \\\\rightarrow 0\\\\)</span>, the limiting solution exhibits multiple interfaces evolving independently and according to their mean curvature.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02108-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02108-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个非局部反应-扩散方程,它是由经典的晶体结构位错的Peierls-Nabarro模型物理产生的。我们的初始配置对应于\(\mathbb {R}^n\), \(n \ge 2\)中的多个滑移环位错。在适当地用一个小相位参数\(\varepsilon >0\)重新缩放方程后,重新缩放的解决方案求解分数阶Allen-Cahn方程。我们证明,作为\(\varepsilon \rightarrow 0\),极限解显示出多个界面独立地根据它们的平均曲率演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Discrete Dislocation Dynamics of Multiple Dislocation Loops

We consider a nonlocal reaction-diffusion equation that physically arises from the classical Peierls–Nabarro model for dislocations in crystalline structures. Our initial configuration corresponds to multiple slip loop dislocations in \(\mathbb {R}^n\), \(n \ge 2\). After suitably rescaling the equation with a small phase parameter \(\varepsilon >0\), the rescaled solution solves a fractional Allen–Cahn equation. We show that, as \(\varepsilon \rightarrow 0\), the limiting solution exhibits multiple interfaces evolving independently and according to their mean curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信