涉及施瓦茨映射的玻尔不等式精细化版本的多维类似物

IF 1.4 3区 数学 Q1 MATHEMATICS
Shanshan Jia, Ming-Sheng Liu, Saminathan Ponnusamy
{"title":"涉及施瓦茨映射的玻尔不等式精细化版本的多维类似物","authors":"Shanshan Jia,&nbsp;Ming-Sheng Liu,&nbsp;Saminathan Ponnusamy","doi":"10.1007/s13324-025-01084-4","DOIUrl":null,"url":null,"abstract":"<div><p>Our first aim of this article is to establish several new versions of refined Bohr inequalities for bounded analytic functions in the unit disk involving Schwarz functions. Secondly, we obtain several new multidimensional analogues of the refined Bohr inequalities for bounded holomorphic mappings on the unit ball in a complex Banach space involving higher dimensional Schwarz mappings. All the results are proved to be sharp.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional analogues of the refined versions of Bohr inequalities involving Schwarz mappings\",\"authors\":\"Shanshan Jia,&nbsp;Ming-Sheng Liu,&nbsp;Saminathan Ponnusamy\",\"doi\":\"10.1007/s13324-025-01084-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our first aim of this article is to establish several new versions of refined Bohr inequalities for bounded analytic functions in the unit disk involving Schwarz functions. Secondly, we obtain several new multidimensional analogues of the refined Bohr inequalities for bounded holomorphic mappings on the unit ball in a complex Banach space involving higher dimensional Schwarz mappings. All the results are proved to be sharp.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01084-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01084-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的第一个目的是建立涉及Schwarz函数的单位圆盘上有界解析函数的几个新版本的精炼玻尔不等式。其次,我们得到了包含高维Schwarz映射的复Banach空间中单位球上有界全纯映射的几个改进的Bohr不等式的多维类似。所有结果都被证明是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional analogues of the refined versions of Bohr inequalities involving Schwarz mappings

Our first aim of this article is to establish several new versions of refined Bohr inequalities for bounded analytic functions in the unit disk involving Schwarz functions. Secondly, we obtain several new multidimensional analogues of the refined Bohr inequalities for bounded holomorphic mappings on the unit ball in a complex Banach space involving higher dimensional Schwarz mappings. All the results are proved to be sharp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信