Chengzhen Wei, Cheng Cheng, Weichen Lin, Chenxi Li, Weimin Du, Kaige Du and Shuo Shan
{"title":"CoNi2S4/NiS2空心结构与超级电容器性能提升†","authors":"Chengzhen Wei, Cheng Cheng, Weichen Lin, Chenxi Li, Weimin Du, Kaige Du and Shuo Shan","doi":"10.1039/D5CE00129C","DOIUrl":null,"url":null,"abstract":"<p >Hollow architectures have great prospects in supercapacitors due to their rich active surface area, good structural stability and convenient transmission channels for ions/electrons. Herein, we present a self-engaged template process to prepare hybrid CoNi<small><sub>2</sub></small>S<small><sub>4</sub></small>/NiS<small><sub>2</sub></small> hollow architectures. Ni–Co glycerate solid spheres are used as templates and transformed to CoNi<small><sub>2</sub></small>S<small><sub>4</sub></small>/NiS<small><sub>2</sub></small><em>via</em> a sulfidation procedure. The supercapacitor’s performance evaluation unveils that these CoNi<small><sub>2</sub></small>S<small><sub>4</sub></small>/NiS<small><sub>2</sub></small> hollow architectures manifest a high capacitance of 1309.2 F g<small><sup>−1</sup></small> at 4.0 A g<small><sup>−1</sup></small> and remarkable cyclability with 1147.6 F g<small><sup>−1</sup></small> retention (only 4.2% decay) for 5000 cycles at 6.0 A g<small><sup>−1</sup></small>. Furthermore, a two-electrode cell assembly of the CoNi<small><sub>2</sub></small>S<small><sub>4</sub></small>/NiS<small><sub>2</sub></small> and activated carbon, displays an energy density of 47.5 W h kg<small><sup>−1</sup></small> at 3301 W kg<small><sup>−1</sup></small> and impressively durable cycle life. These results provide a simple avenue to design an efficient electrode material for supercapacitors based on metal sulfides.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 20","pages":" 3229-3237"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hollow architectures of CoNi2S4/NiS2 with boosted performance for supercapacitors†\",\"authors\":\"Chengzhen Wei, Cheng Cheng, Weichen Lin, Chenxi Li, Weimin Du, Kaige Du and Shuo Shan\",\"doi\":\"10.1039/D5CE00129C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hollow architectures have great prospects in supercapacitors due to their rich active surface area, good structural stability and convenient transmission channels for ions/electrons. Herein, we present a self-engaged template process to prepare hybrid CoNi<small><sub>2</sub></small>S<small><sub>4</sub></small>/NiS<small><sub>2</sub></small> hollow architectures. Ni–Co glycerate solid spheres are used as templates and transformed to CoNi<small><sub>2</sub></small>S<small><sub>4</sub></small>/NiS<small><sub>2</sub></small><em>via</em> a sulfidation procedure. The supercapacitor’s performance evaluation unveils that these CoNi<small><sub>2</sub></small>S<small><sub>4</sub></small>/NiS<small><sub>2</sub></small> hollow architectures manifest a high capacitance of 1309.2 F g<small><sup>−1</sup></small> at 4.0 A g<small><sup>−1</sup></small> and remarkable cyclability with 1147.6 F g<small><sup>−1</sup></small> retention (only 4.2% decay) for 5000 cycles at 6.0 A g<small><sup>−1</sup></small>. Furthermore, a two-electrode cell assembly of the CoNi<small><sub>2</sub></small>S<small><sub>4</sub></small>/NiS<small><sub>2</sub></small> and activated carbon, displays an energy density of 47.5 W h kg<small><sup>−1</sup></small> at 3301 W kg<small><sup>−1</sup></small> and impressively durable cycle life. These results provide a simple avenue to design an efficient electrode material for supercapacitors based on metal sulfides.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 20\",\"pages\":\" 3229-3237\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00129c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00129c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
空心结构具有活性表面积大、结构稳定性好、离子/电子传输通道方便等优点,在超级电容器中具有广阔的应用前景。在此,我们提出了一种自参与模板工艺来制备混合CoNi2S4/NiS2空心架构。Ni-Co甘油固体球作为模板,通过硫化过程转化为CoNi2S4/ nis2。超级电容器的性能评估表明,这些CoNi2S4/NiS2空心结构在4.0 a g−1下具有1309.2 F g−1的高电容,并且在6.0 a g−1下的5000次循环中具有1147.6 F g−1的保留率(仅4.2%衰减)。此外,由CoNi2S4/NiS2和活性炭组成的双电极电池组件在3301 W kg - 1时显示出47.5 W h kg - 1的能量密度和令人印象深刻的持久循环寿命。这些结果为设计基于金属硫化物的超级电容器的高效电极材料提供了一条简单的途径。
Hollow architectures of CoNi2S4/NiS2 with boosted performance for supercapacitors†
Hollow architectures have great prospects in supercapacitors due to their rich active surface area, good structural stability and convenient transmission channels for ions/electrons. Herein, we present a self-engaged template process to prepare hybrid CoNi2S4/NiS2 hollow architectures. Ni–Co glycerate solid spheres are used as templates and transformed to CoNi2S4/NiS2via a sulfidation procedure. The supercapacitor’s performance evaluation unveils that these CoNi2S4/NiS2 hollow architectures manifest a high capacitance of 1309.2 F g−1 at 4.0 A g−1 and remarkable cyclability with 1147.6 F g−1 retention (only 4.2% decay) for 5000 cycles at 6.0 A g−1. Furthermore, a two-electrode cell assembly of the CoNi2S4/NiS2 and activated carbon, displays an energy density of 47.5 W h kg−1 at 3301 W kg−1 and impressively durable cycle life. These results provide a simple avenue to design an efficient electrode material for supercapacitors based on metal sulfides.