甲醇脱水制二甲醚†的实验与计算优化

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Maciej G. Walerowski , Stylianos Kyrimis , Matthew E. Potter , Alice E. Oakley , Marina Carravetta , Lindsay-Marie Armstrong , Robert Raja
{"title":"甲醇脱水制二甲醚†的实验与计算优化","authors":"Maciej G. Walerowski ,&nbsp;Stylianos Kyrimis ,&nbsp;Matthew E. Potter ,&nbsp;Alice E. Oakley ,&nbsp;Marina Carravetta ,&nbsp;Lindsay-Marie Armstrong ,&nbsp;Robert Raja","doi":"10.1039/d5cy00062a","DOIUrl":null,"url":null,"abstract":"<div><div>Meeting the International Maritime Organization's net-zero target by 2050 necessitates the replacement of marine fossil fuels with sustainable alternatives, such as dimethyl ether (DME). Silicon-doped aluminophosphate (SAPO) solid acid catalysts, particularly the weakly-acidic SAPO-11, can catalyse the selective dehydration of methanol-to-DME with exceptional stability. Herein, we present a combined experimental, computational fluid dynamics, and design of experiments study to augment catalyst efficiency and DME production, and to support scale-up endeavours. Using a four-dimensional design surface, it was found that longer catalyst beds and higher operating temperature increase DME yields, with the catalyst bed length having a more pronounced influence. In contrast, the use of highly concentrated methanol reactant streams had a detrimental effect and this was ascribed to a saturation of the active sites in the SAPO-11 catalyst. Improved single-pass conversions and catalyst longevity on industrial scales can thus be achieved by optimising both the number of acid sites in SAPO-11 and reaction parameters.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 10","pages":"Pages 3216-3225"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and computational optimisation of methanol dehydration to dimethyl ether†\",\"authors\":\"Maciej G. Walerowski ,&nbsp;Stylianos Kyrimis ,&nbsp;Matthew E. Potter ,&nbsp;Alice E. Oakley ,&nbsp;Marina Carravetta ,&nbsp;Lindsay-Marie Armstrong ,&nbsp;Robert Raja\",\"doi\":\"10.1039/d5cy00062a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meeting the International Maritime Organization's net-zero target by 2050 necessitates the replacement of marine fossil fuels with sustainable alternatives, such as dimethyl ether (DME). Silicon-doped aluminophosphate (SAPO) solid acid catalysts, particularly the weakly-acidic SAPO-11, can catalyse the selective dehydration of methanol-to-DME with exceptional stability. Herein, we present a combined experimental, computational fluid dynamics, and design of experiments study to augment catalyst efficiency and DME production, and to support scale-up endeavours. Using a four-dimensional design surface, it was found that longer catalyst beds and higher operating temperature increase DME yields, with the catalyst bed length having a more pronounced influence. In contrast, the use of highly concentrated methanol reactant streams had a detrimental effect and this was ascribed to a saturation of the active sites in the SAPO-11 catalyst. Improved single-pass conversions and catalyst longevity on industrial scales can thus be achieved by optimising both the number of acid sites in SAPO-11 and reaction parameters.</div></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"15 10\",\"pages\":\"Pages 3216-3225\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475325001613\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325001613","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

要实现国际海事组织到2050年的净零目标,就必须用可持续的替代品取代海洋化石燃料,如二甲醚(DME)。掺硅磷酸铝(SAPO)固体酸催化剂,尤其是弱酸性的SAPO-11,能够催化甲醇选择性脱水制二甲醚,且稳定性优异。在此,我们提出了一个结合实验、计算流体动力学和实验设计的研究,以提高催化剂效率和二甲醚的生产,并支持扩大规模的努力。采用四维设计表面,发现较长的催化剂床和较高的操作温度可以提高二甲醚的收率,其中催化剂床长对二甲醚收率的影响更为明显。相反,使用高浓度的甲醇反应物会产生有害的影响,这是由于SAPO-11催化剂中活性位点的饱和。因此,通过优化SAPO-11中酸位的数量和反应参数,可以改善工业规模上的单道转化率和催化剂寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and computational optimisation of methanol dehydration to dimethyl ether†
Meeting the International Maritime Organization's net-zero target by 2050 necessitates the replacement of marine fossil fuels with sustainable alternatives, such as dimethyl ether (DME). Silicon-doped aluminophosphate (SAPO) solid acid catalysts, particularly the weakly-acidic SAPO-11, can catalyse the selective dehydration of methanol-to-DME with exceptional stability. Herein, we present a combined experimental, computational fluid dynamics, and design of experiments study to augment catalyst efficiency and DME production, and to support scale-up endeavours. Using a four-dimensional design surface, it was found that longer catalyst beds and higher operating temperature increase DME yields, with the catalyst bed length having a more pronounced influence. In contrast, the use of highly concentrated methanol reactant streams had a detrimental effect and this was ascribed to a saturation of the active sites in the SAPO-11 catalyst. Improved single-pass conversions and catalyst longevity on industrial scales can thus be achieved by optimising both the number of acid sites in SAPO-11 and reaction parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信