Di Zang;Zhe Cui;Zengqiang Wang;Juntao Lei;Yongjie Ding;Chenguang Wei;Junqi Zhang
{"title":"交通预测的几何代数多阶图神经网络","authors":"Di Zang;Zhe Cui;Zengqiang Wang;Juntao Lei;Yongjie Ding;Chenguang Wei;Junqi Zhang","doi":"10.1109/TBDATA.2024.3442533","DOIUrl":null,"url":null,"abstract":"Accurate traffic prediction is crucial for urban traffic management. Spatial-temporal graph neural networks, which combine graph neural networks with time series processing, have been extensively employed in traffic prediction. However, traditional graph neural networks only capture pairwise spatial relationships between road network nodes, neglecting high-order interactions among multiple nodes. Meanwhile, most work for extracting temporal dependencies suffers from implicit modeling and overlooks the internal and external dependencies of time series. To address these challenges, we propose a Geometric Algebraic Multi-order Graph Neural Network (GA-MGNN). Specifically, in the temporal dimension, we design a convolution kernel based on the rotation matrix of geometric algebra, which not only learns internal dependencies between different time steps in time series but also external dependencies between time series and convolution kernels. In the spatial dimension, we construct a tokenized hypergraph and integrate dynamic graph convolution with attention hypergraph convolution to comprehensively capture multi-order spatial dependencies. Additionally, we design a segmented loss function based on traffic periodic information to further improve prediction accuracy. Extensive experiments on seven real-world datasets demonstrate that GA-MGNN outperforms state-of-the-art baselines.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"1206-1220"},"PeriodicalIF":7.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Algebra Multi-Order Graph Neural Network for Traffic Prediction\",\"authors\":\"Di Zang;Zhe Cui;Zengqiang Wang;Juntao Lei;Yongjie Ding;Chenguang Wei;Junqi Zhang\",\"doi\":\"10.1109/TBDATA.2024.3442533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate traffic prediction is crucial for urban traffic management. Spatial-temporal graph neural networks, which combine graph neural networks with time series processing, have been extensively employed in traffic prediction. However, traditional graph neural networks only capture pairwise spatial relationships between road network nodes, neglecting high-order interactions among multiple nodes. Meanwhile, most work for extracting temporal dependencies suffers from implicit modeling and overlooks the internal and external dependencies of time series. To address these challenges, we propose a Geometric Algebraic Multi-order Graph Neural Network (GA-MGNN). Specifically, in the temporal dimension, we design a convolution kernel based on the rotation matrix of geometric algebra, which not only learns internal dependencies between different time steps in time series but also external dependencies between time series and convolution kernels. In the spatial dimension, we construct a tokenized hypergraph and integrate dynamic graph convolution with attention hypergraph convolution to comprehensively capture multi-order spatial dependencies. Additionally, we design a segmented loss function based on traffic periodic information to further improve prediction accuracy. Extensive experiments on seven real-world datasets demonstrate that GA-MGNN outperforms state-of-the-art baselines.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 3\",\"pages\":\"1206-1220\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10634808/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10634808/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Geometric Algebra Multi-Order Graph Neural Network for Traffic Prediction
Accurate traffic prediction is crucial for urban traffic management. Spatial-temporal graph neural networks, which combine graph neural networks with time series processing, have been extensively employed in traffic prediction. However, traditional graph neural networks only capture pairwise spatial relationships between road network nodes, neglecting high-order interactions among multiple nodes. Meanwhile, most work for extracting temporal dependencies suffers from implicit modeling and overlooks the internal and external dependencies of time series. To address these challenges, we propose a Geometric Algebraic Multi-order Graph Neural Network (GA-MGNN). Specifically, in the temporal dimension, we design a convolution kernel based on the rotation matrix of geometric algebra, which not only learns internal dependencies between different time steps in time series but also external dependencies between time series and convolution kernels. In the spatial dimension, we construct a tokenized hypergraph and integrate dynamic graph convolution with attention hypergraph convolution to comprehensively capture multi-order spatial dependencies. Additionally, we design a segmented loss function based on traffic periodic information to further improve prediction accuracy. Extensive experiments on seven real-world datasets demonstrate that GA-MGNN outperforms state-of-the-art baselines.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.