过滤输送过程的动态似然方法:平流-扩散动力学

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Johannes Krotz , Juan M. Restrepo , Jorge Ramirez
{"title":"过滤输送过程的动态似然方法:平流-扩散动力学","authors":"Johannes Krotz ,&nbsp;Juan M. Restrepo ,&nbsp;Jorge Ramirez","doi":"10.1016/j.jcp.2025.114089","DOIUrl":null,"url":null,"abstract":"<div><div>A Bayesian data assimilation scheme is formulated for advection-dominated advective and diffusive evolutionary problems, based upon the Dynamic Likelihood (DLF) approach to filtering. The DLF was developed specifically for hyperbolic problems –waves–, and in this paper, it is extended via a split step formulation, to handle advection-diffusion problems. In the dynamic likelihood approach, observations and their statistics are used to propagate probabilities along characteristics, evolving the likelihood in time. The estimate posterior thus inherits phase information. For advection-diffusion the advective part of the time evolution is handled on the basis of observations alone, while the diffusive part is informed through the model as well as observations. We expect, and indeed show here, that in advection-dominated problems, the DLF approach produces better estimates than other assimilation approaches, particularly when the observations are sparse and have low uncertainty. The added computational expense of the method is cubic in the total number of observations over time, which is on the same order of magnitude as a standard Kalman filter and can be mitigated by bounding the number of forward propagated observations, discarding the least informative data.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"536 ","pages":"Article 114089"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic likelihood approach to filtering transport processes: advection-diffusion dynamics\",\"authors\":\"Johannes Krotz ,&nbsp;Juan M. Restrepo ,&nbsp;Jorge Ramirez\",\"doi\":\"10.1016/j.jcp.2025.114089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A Bayesian data assimilation scheme is formulated for advection-dominated advective and diffusive evolutionary problems, based upon the Dynamic Likelihood (DLF) approach to filtering. The DLF was developed specifically for hyperbolic problems –waves–, and in this paper, it is extended via a split step formulation, to handle advection-diffusion problems. In the dynamic likelihood approach, observations and their statistics are used to propagate probabilities along characteristics, evolving the likelihood in time. The estimate posterior thus inherits phase information. For advection-diffusion the advective part of the time evolution is handled on the basis of observations alone, while the diffusive part is informed through the model as well as observations. We expect, and indeed show here, that in advection-dominated problems, the DLF approach produces better estimates than other assimilation approaches, particularly when the observations are sparse and have low uncertainty. The added computational expense of the method is cubic in the total number of observations over time, which is on the same order of magnitude as a standard Kalman filter and can be mitigated by bounding the number of forward propagated observations, discarding the least informative data.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"536 \",\"pages\":\"Article 114089\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125003729\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003729","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于动态似然(DLF)滤波方法,提出了以平流为主的平流和扩散演化问题的贝叶斯数据同化方案。DLF是专门为双曲问题-波-而开发的,在本文中,它通过分步公式得到扩展,以处理平流扩散问题。在动态似然方法中,观测值及其统计量用于沿特征传播概率,随时间演化似然。后验估计继承了相位信息。对于平流-扩散,时间演变的平流部分仅根据观测来处理,而扩散部分则通过模型和观测来处理。我们期望,并且确实在这里显示,在平流主导的问题中,DLF方法比其他同化方法产生更好的估计,特别是当观测稀疏且具有低不确定性时。随着时间的推移,该方法增加的计算费用是观测总数的三次方,这与标准卡尔曼滤波器在同一个数量级上,可以通过限制前向传播观测的数量来减轻,丢弃信息最少的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic likelihood approach to filtering transport processes: advection-diffusion dynamics
A Bayesian data assimilation scheme is formulated for advection-dominated advective and diffusive evolutionary problems, based upon the Dynamic Likelihood (DLF) approach to filtering. The DLF was developed specifically for hyperbolic problems –waves–, and in this paper, it is extended via a split step formulation, to handle advection-diffusion problems. In the dynamic likelihood approach, observations and their statistics are used to propagate probabilities along characteristics, evolving the likelihood in time. The estimate posterior thus inherits phase information. For advection-diffusion the advective part of the time evolution is handled on the basis of observations alone, while the diffusive part is informed through the model as well as observations. We expect, and indeed show here, that in advection-dominated problems, the DLF approach produces better estimates than other assimilation approaches, particularly when the observations are sparse and have low uncertainty. The added computational expense of the method is cubic in the total number of observations over time, which is on the same order of magnitude as a standard Kalman filter and can be mitigated by bounding the number of forward propagated observations, discarding the least informative data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信