Sm3+掺杂Na3V2-xSmx(PO4)3@C高性能钠离子电池阴极:优化钠存储动力学和循环稳定性

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zhiqiang Lv , Zijian You , Xiang Zhang , Yanbin Xu , Yuming Cui , Zhenglong Yang , Bin Fang
{"title":"Sm3+掺杂Na3V2-xSmx(PO4)3@C高性能钠离子电池阴极:优化钠存储动力学和循环稳定性","authors":"Zhiqiang Lv ,&nbsp;Zijian You ,&nbsp;Xiang Zhang ,&nbsp;Yanbin Xu ,&nbsp;Yuming Cui ,&nbsp;Zhenglong Yang ,&nbsp;Bin Fang","doi":"10.1016/j.jcis.2025.137906","DOIUrl":null,"url":null,"abstract":"<div><div>Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> is considered a promising cathode material for high-performance sodium ion batteries due to its high operating voltage, fast ion diffusion and exceptionally stable crystal structure. However, its low intrinsic electronic conductivity remains a challenge for large-scale applications. In this study, a Sm<sup>3+</sup>-doped strategy is proposed to enhance its high-rate capacity and cycling stability. Theoretical calculations and charge transfer kinetics tests demonstrate that Sm<sup>3+</sup> doping can reduce the band gap and Na<sup>+</sup> diffusion energy barrier, thereby effectively enhancing electron conduction and Na<sup>+</sup> migration. Moreover, the reduced integrated-crystal orbital Hamilton population (ICOHP) of Sm-O bond indicates improved structural stability of the crystal structure. Consequently, the synthesized Sm0.05-NVP@C exhibits outstanding rate capacities and cycling stabilities, delivering excellent reversible capacities of 103.26 and 72.81mAh g<sup>−1</sup> at 1C and 40C. Moreover, it demonstrates remarkable capacity retention of 92.56 % at 10C after 1250 cycles. Notably, in-situ XRD reveals a highly reversible bi-phase transition reaction mechanism between Na<sub>3</sub>V<sub>1.95</sub>Sm<sub>0.05</sub>(PO<sub>4</sub>)<sub>3</sub> and NaV<sub>1.95</sub>Sm<sub>0.05</sub>(PO<sub>4</sub>)<sub>3</sub>. This study highlights the great potential of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode for achieving high-rate performance and long-term stability in sodium-ion batteries.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"696 ","pages":"Article 137906"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sm3+ doped Na3V2-xSmx(PO4)3@C cathode for high-performance sodium ion batteries: Towards optimized sodium storage kinetics and cycling stability\",\"authors\":\"Zhiqiang Lv ,&nbsp;Zijian You ,&nbsp;Xiang Zhang ,&nbsp;Yanbin Xu ,&nbsp;Yuming Cui ,&nbsp;Zhenglong Yang ,&nbsp;Bin Fang\",\"doi\":\"10.1016/j.jcis.2025.137906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> is considered a promising cathode material for high-performance sodium ion batteries due to its high operating voltage, fast ion diffusion and exceptionally stable crystal structure. However, its low intrinsic electronic conductivity remains a challenge for large-scale applications. In this study, a Sm<sup>3+</sup>-doped strategy is proposed to enhance its high-rate capacity and cycling stability. Theoretical calculations and charge transfer kinetics tests demonstrate that Sm<sup>3+</sup> doping can reduce the band gap and Na<sup>+</sup> diffusion energy barrier, thereby effectively enhancing electron conduction and Na<sup>+</sup> migration. Moreover, the reduced integrated-crystal orbital Hamilton population (ICOHP) of Sm-O bond indicates improved structural stability of the crystal structure. Consequently, the synthesized Sm0.05-NVP@C exhibits outstanding rate capacities and cycling stabilities, delivering excellent reversible capacities of 103.26 and 72.81mAh g<sup>−1</sup> at 1C and 40C. Moreover, it demonstrates remarkable capacity retention of 92.56 % at 10C after 1250 cycles. Notably, in-situ XRD reveals a highly reversible bi-phase transition reaction mechanism between Na<sub>3</sub>V<sub>1.95</sub>Sm<sub>0.05</sub>(PO<sub>4</sub>)<sub>3</sub> and NaV<sub>1.95</sub>Sm<sub>0.05</sub>(PO<sub>4</sub>)<sub>3</sub>. This study highlights the great potential of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode for achieving high-rate performance and long-term stability in sodium-ion batteries.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"696 \",\"pages\":\"Article 137906\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725012974\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725012974","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Na3V2(PO4)3具有工作电压高、离子扩散快、晶体结构异常稳定等优点,被认为是高性能钠离子电池极具发展前景的正极材料。然而,其低本征电子导电性仍然是大规模应用的挑战。在本研究中,提出了一种掺杂Sm3+的策略来提高其高倍率容量和循环稳定性。理论计算和电荷转移动力学测试表明,Sm3+掺杂可以减小带隙和Na+扩散能垒,从而有效增强电子传导和Na+迁移。此外,Sm-O键的集成晶体轨道Hamilton族数(ICOHP)的降低表明晶体结构的稳定性得到了提高。因此,合成的Sm0.05-NVP@C具有出色的倍率容量和循环稳定性,在1C和40C下的可逆容量分别为103.26和72.81mAh g−1。在10C下循环1250次后,其容量保持率达到92.56%。值得注意的是,原位XRD显示Na3V1.95Sm0.05(PO4)3与NaV1.95Sm0.05(PO4)3之间存在高度可逆的双相转变反应机制。该研究强调了Na3V2(PO4)3阴极在钠离子电池中实现高倍率性能和长期稳定性的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sm3+ doped Na3V2-xSmx(PO4)3@C cathode for high-performance sodium ion batteries: Towards optimized sodium storage kinetics and cycling stability
Na3V2(PO4)3 is considered a promising cathode material for high-performance sodium ion batteries due to its high operating voltage, fast ion diffusion and exceptionally stable crystal structure. However, its low intrinsic electronic conductivity remains a challenge for large-scale applications. In this study, a Sm3+-doped strategy is proposed to enhance its high-rate capacity and cycling stability. Theoretical calculations and charge transfer kinetics tests demonstrate that Sm3+ doping can reduce the band gap and Na+ diffusion energy barrier, thereby effectively enhancing electron conduction and Na+ migration. Moreover, the reduced integrated-crystal orbital Hamilton population (ICOHP) of Sm-O bond indicates improved structural stability of the crystal structure. Consequently, the synthesized Sm0.05-NVP@C exhibits outstanding rate capacities and cycling stabilities, delivering excellent reversible capacities of 103.26 and 72.81mAh g−1 at 1C and 40C. Moreover, it demonstrates remarkable capacity retention of 92.56 % at 10C after 1250 cycles. Notably, in-situ XRD reveals a highly reversible bi-phase transition reaction mechanism between Na3V1.95Sm0.05(PO4)3 and NaV1.95Sm0.05(PO4)3. This study highlights the great potential of Na3V2(PO4)3 cathode for achieving high-rate performance and long-term stability in sodium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信