一类带移动边界Schrödinger问题的收敛性分析

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Daniel G. Alfaro Vigo , Daniele C.R. Gomes , Bruno A. do Carmo , Mauro A. Rincon
{"title":"一类带移动边界Schrödinger问题的收敛性分析","authors":"Daniel G. Alfaro Vigo ,&nbsp;Daniele C.R. Gomes ,&nbsp;Bruno A. do Carmo ,&nbsp;Mauro A. Rincon","doi":"10.1016/j.matcom.2025.04.042","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we present the mathematical analysis of the convergence of the linearized Crank–Nicolson Galerkin method for a nonlinear Schrödinger problem related to a domain with a moving boundary. The convergence analysis of the numerical method is carried out for both semidiscrete and fully discrete problems. We establish an optimal error estimate in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm with order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mn>2</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>r</mi></mrow></math></span>, where <span><math><mi>h</mi></math></span> is the finite element mesh size, <span><math><mi>τ</mi></math></span> is the time step, and <span><math><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></math></span> represents the degree of the finite element polynomial basis. Numerical simulations are provided to confirm the consistency between theoretical and numerical results, validating the method and the order of convergence for different degrees <span><math><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span> of the Lagrange polynomials and also for Hermite polynomials (degree <span><math><mrow><mi>p</mi><mo>=</mo><mn>3</mn></mrow></math></span>), which form the basis of the approximate solution.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"238 ","pages":"Pages 45-64"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of a Schrödinger problem with moving boundary\",\"authors\":\"Daniel G. Alfaro Vigo ,&nbsp;Daniele C.R. Gomes ,&nbsp;Bruno A. do Carmo ,&nbsp;Mauro A. Rincon\",\"doi\":\"10.1016/j.matcom.2025.04.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we present the mathematical analysis of the convergence of the linearized Crank–Nicolson Galerkin method for a nonlinear Schrödinger problem related to a domain with a moving boundary. The convergence analysis of the numerical method is carried out for both semidiscrete and fully discrete problems. We establish an optimal error estimate in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm with order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mn>2</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>r</mi></mrow></math></span>, where <span><math><mi>h</mi></math></span> is the finite element mesh size, <span><math><mi>τ</mi></math></span> is the time step, and <span><math><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></math></span> represents the degree of the finite element polynomial basis. Numerical simulations are provided to confirm the consistency between theoretical and numerical results, validating the method and the order of convergence for different degrees <span><math><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span> of the Lagrange polynomials and also for Hermite polynomials (degree <span><math><mrow><mi>p</mi><mo>=</mo><mn>3</mn></mrow></math></span>), which form the basis of the approximate solution.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"238 \",\"pages\":\"Pages 45-64\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425001806\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425001806","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们给出了线性化的Crank-Nicolson Galerkin方法的收敛性的数学分析。对半离散和全离散问题进行了数值方法的收敛性分析。我们在l2 -范数中建立了O阶(τ2+hs)的最优误差估计,2≤s≤r,其中h为有限元网格尺寸,τ为时间步长,r−1表示有限元多项式基的程度。通过数值模拟验证了理论结果与数值结果的一致性,验证了该方法在p≥1次的拉格朗日多项式和p=3次的Hermite多项式下的收敛阶,从而构成了近似解的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of a Schrödinger problem with moving boundary
In this article, we present the mathematical analysis of the convergence of the linearized Crank–Nicolson Galerkin method for a nonlinear Schrödinger problem related to a domain with a moving boundary. The convergence analysis of the numerical method is carried out for both semidiscrete and fully discrete problems. We establish an optimal error estimate in the L2-norm with order O(τ2+hs),2sr, where h is the finite element mesh size, τ is the time step, and r1 represents the degree of the finite element polynomial basis. Numerical simulations are provided to confirm the consistency between theoretical and numerical results, validating the method and the order of convergence for different degrees p1 of the Lagrange polynomials and also for Hermite polynomials (degree p=3), which form the basis of the approximate solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信