Navid Asmari , Lukas Neuner , Richard Weiss , Amin Mazloumian , Matthias Rosenthal , Alireza Karimi , Georg Ernest Fantner
{"title":"使用遗传算法的原子力显微镜数据驱动控制","authors":"Navid Asmari , Lukas Neuner , Richard Weiss , Amin Mazloumian , Matthias Rosenthal , Alireza Karimi , Georg Ernest Fantner","doi":"10.1016/j.ultramic.2025.114156","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing the scanning speed in Atomic Force Microscopy (AFM) relies on improving the tracking performance in the vertical direction of motion. The lightly damped resonances of piezo-actuators utilized in AFM nano-positioning stages hinder the maximum achievable bandwidth in tracking sample topographies. A high-order linear controller is proposed as solution. This controller is placed in series with the conventional proportional-integral (PI) controller in AFM to cancel the resonances and push the bandwidth limits to higher values. An optimization problem is formed based on the frequency response of the actuator and the desired performance characteristics for the system. The controller is shaped by solving this problem with a genetic algorithm. Implementing the proposed controller on several AFM scanners shows its effectiveness in improving the tracking bandwidth and hence, increasing the achievable scan speed.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"275 ","pages":"Article 114156"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven control in atomic force microscopy using a genetic algorithm\",\"authors\":\"Navid Asmari , Lukas Neuner , Richard Weiss , Amin Mazloumian , Matthias Rosenthal , Alireza Karimi , Georg Ernest Fantner\",\"doi\":\"10.1016/j.ultramic.2025.114156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increasing the scanning speed in Atomic Force Microscopy (AFM) relies on improving the tracking performance in the vertical direction of motion. The lightly damped resonances of piezo-actuators utilized in AFM nano-positioning stages hinder the maximum achievable bandwidth in tracking sample topographies. A high-order linear controller is proposed as solution. This controller is placed in series with the conventional proportional-integral (PI) controller in AFM to cancel the resonances and push the bandwidth limits to higher values. An optimization problem is formed based on the frequency response of the actuator and the desired performance characteristics for the system. The controller is shaped by solving this problem with a genetic algorithm. Implementing the proposed controller on several AFM scanners shows its effectiveness in improving the tracking bandwidth and hence, increasing the achievable scan speed.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"275 \",\"pages\":\"Article 114156\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399125000555\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125000555","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
Data-driven control in atomic force microscopy using a genetic algorithm
Increasing the scanning speed in Atomic Force Microscopy (AFM) relies on improving the tracking performance in the vertical direction of motion. The lightly damped resonances of piezo-actuators utilized in AFM nano-positioning stages hinder the maximum achievable bandwidth in tracking sample topographies. A high-order linear controller is proposed as solution. This controller is placed in series with the conventional proportional-integral (PI) controller in AFM to cancel the resonances and push the bandwidth limits to higher values. An optimization problem is formed based on the frequency response of the actuator and the desired performance characteristics for the system. The controller is shaped by solving this problem with a genetic algorithm. Implementing the proposed controller on several AFM scanners shows its effectiveness in improving the tracking bandwidth and hence, increasing the achievable scan speed.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.