Mengyun Qiao, Kathryn A. McGurk, Shuo Wang, Paul M. Matthews, Declan P. O’Regan, Wenjia Bai
{"title":"一个个性化的时间分辨三维网格生成模型揭示正常的心脏动力学","authors":"Mengyun Qiao, Kathryn A. McGurk, Shuo Wang, Paul M. Matthews, Declan P. O’Regan, Wenjia Bai","doi":"10.1038/s42256-025-01035-5","DOIUrl":null,"url":null,"abstract":"Understanding the structure and motion of the heart is crucial for diagnosing and managing cardiovascular diseases, the leading cause of global death. There is wide variation in cardiac shape and motion patterns, influenced by demographic, anthropometric and disease factors. Unravelling normal patterns of shape and motion, and understanding how each individual deviates from the norm, would facilitate accurate diagnosis and personalized treatment strategies. Here, to this end, we developed a conditional generative model, MeshHeart, to learn the distribution of shape and motion patterns for the left and right ventricles of the heart. To model the high-dimensional spatio-temporal mesh data, MeshHeart uses a geometric encoder to represent cardiac meshes in a latent space and a temporal transformer to model the motion dynamics of latent representations. Based on MeshHeart, we investigate the latent space of 3D + t cardiac mesh sequences and propose a distance metric, latent delta, which quantifies the deviation of a real heart from its personalized normative pattern. Here, 3D + t refers to three-dimensional data evolving over time. In experiments using a large cardiac magnetic resonance image dataset of 38,309 participants from the UK Biobank, MeshHeart demonstrates high performance in cardiac mesh sequence reconstruction and generation. Latent space features are discriminative for cardiac disease classification, whereas latent delta exhibits strong correlations with clinical phenotypes in phenome-wide association studies. MeshHeart, a conditional generative model for time-resolved 3D heart mesh generation, is proposed by Qiao et al. to unravel heart motion patterns. Their findings could advance diagnosis and treatment strategies for cardiovascular diseases.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"7 5","pages":"800-811"},"PeriodicalIF":23.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42256-025-01035-5.pdf","citationCount":"0","resultStr":"{\"title\":\"A personalized time-resolved 3D mesh generative model for unveiling normal heart dynamics\",\"authors\":\"Mengyun Qiao, Kathryn A. McGurk, Shuo Wang, Paul M. Matthews, Declan P. O’Regan, Wenjia Bai\",\"doi\":\"10.1038/s42256-025-01035-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the structure and motion of the heart is crucial for diagnosing and managing cardiovascular diseases, the leading cause of global death. There is wide variation in cardiac shape and motion patterns, influenced by demographic, anthropometric and disease factors. Unravelling normal patterns of shape and motion, and understanding how each individual deviates from the norm, would facilitate accurate diagnosis and personalized treatment strategies. Here, to this end, we developed a conditional generative model, MeshHeart, to learn the distribution of shape and motion patterns for the left and right ventricles of the heart. To model the high-dimensional spatio-temporal mesh data, MeshHeart uses a geometric encoder to represent cardiac meshes in a latent space and a temporal transformer to model the motion dynamics of latent representations. Based on MeshHeart, we investigate the latent space of 3D + t cardiac mesh sequences and propose a distance metric, latent delta, which quantifies the deviation of a real heart from its personalized normative pattern. Here, 3D + t refers to three-dimensional data evolving over time. In experiments using a large cardiac magnetic resonance image dataset of 38,309 participants from the UK Biobank, MeshHeart demonstrates high performance in cardiac mesh sequence reconstruction and generation. Latent space features are discriminative for cardiac disease classification, whereas latent delta exhibits strong correlations with clinical phenotypes in phenome-wide association studies. MeshHeart, a conditional generative model for time-resolved 3D heart mesh generation, is proposed by Qiao et al. to unravel heart motion patterns. Their findings could advance diagnosis and treatment strategies for cardiovascular diseases.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"7 5\",\"pages\":\"800-811\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s42256-025-01035-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-025-01035-5\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-025-01035-5","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A personalized time-resolved 3D mesh generative model for unveiling normal heart dynamics
Understanding the structure and motion of the heart is crucial for diagnosing and managing cardiovascular diseases, the leading cause of global death. There is wide variation in cardiac shape and motion patterns, influenced by demographic, anthropometric and disease factors. Unravelling normal patterns of shape and motion, and understanding how each individual deviates from the norm, would facilitate accurate diagnosis and personalized treatment strategies. Here, to this end, we developed a conditional generative model, MeshHeart, to learn the distribution of shape and motion patterns for the left and right ventricles of the heart. To model the high-dimensional spatio-temporal mesh data, MeshHeart uses a geometric encoder to represent cardiac meshes in a latent space and a temporal transformer to model the motion dynamics of latent representations. Based on MeshHeart, we investigate the latent space of 3D + t cardiac mesh sequences and propose a distance metric, latent delta, which quantifies the deviation of a real heart from its personalized normative pattern. Here, 3D + t refers to three-dimensional data evolving over time. In experiments using a large cardiac magnetic resonance image dataset of 38,309 participants from the UK Biobank, MeshHeart demonstrates high performance in cardiac mesh sequence reconstruction and generation. Latent space features are discriminative for cardiac disease classification, whereas latent delta exhibits strong correlations with clinical phenotypes in phenome-wide association studies. MeshHeart, a conditional generative model for time-resolved 3D heart mesh generation, is proposed by Qiao et al. to unravel heart motion patterns. Their findings could advance diagnosis and treatment strategies for cardiovascular diseases.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.