学习去模糊偏振图像

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chu Zhou, Minggui Teng, Xinyu Zhou, Chao Xu, Imari Sato, Boxin Shi
{"title":"学习去模糊偏振图像","authors":"Chu Zhou, Minggui Teng, Xinyu Zhou, Chao Xu, Imari Sato, Boxin Shi","doi":"10.1007/s11263-025-02459-7","DOIUrl":null,"url":null,"abstract":"<p>A polarization camera can capture four linear polarized images with different polarizer angles in a single shot, which is useful in polarization-based vision applications since the degree of linear polarization (DoLP) and the angle of linear polarization (AoLP) can be directly computed from the captured polarized images. However, since the on-chip micro-polarizers block part of the light so that the sensor often requires a longer exposure time, the captured polarized images are prone to motion blur caused by camera shakes, leading to noticeable degradation in the computed DoLP and AoLP. Deblurring methods for conventional images often show degraded performance when handling the polarized images since they only focus on deblurring without considering the polarization constraints. In this paper, we propose a polarized image deblurring pipeline to solve the problem in a polarization-aware manner by adopting a divide-and-conquer strategy to explicitly decompose the problem into two less ill-posed sub-problems, and design a two-stage neural network to handle the two sub-problems respectively. Experimental results show that our method achieves state-of-the-art performance on both synthetic and real-world images, and can improve the performance of polarization-based vision applications such as image dehazing and reflection removal.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"76 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Deblur Polarized Images\",\"authors\":\"Chu Zhou, Minggui Teng, Xinyu Zhou, Chao Xu, Imari Sato, Boxin Shi\",\"doi\":\"10.1007/s11263-025-02459-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A polarization camera can capture four linear polarized images with different polarizer angles in a single shot, which is useful in polarization-based vision applications since the degree of linear polarization (DoLP) and the angle of linear polarization (AoLP) can be directly computed from the captured polarized images. However, since the on-chip micro-polarizers block part of the light so that the sensor often requires a longer exposure time, the captured polarized images are prone to motion blur caused by camera shakes, leading to noticeable degradation in the computed DoLP and AoLP. Deblurring methods for conventional images often show degraded performance when handling the polarized images since they only focus on deblurring without considering the polarization constraints. In this paper, we propose a polarized image deblurring pipeline to solve the problem in a polarization-aware manner by adopting a divide-and-conquer strategy to explicitly decompose the problem into two less ill-posed sub-problems, and design a two-stage neural network to handle the two sub-problems respectively. Experimental results show that our method achieves state-of-the-art performance on both synthetic and real-world images, and can improve the performance of polarization-based vision applications such as image dehazing and reflection removal.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02459-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02459-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

偏振相机可以在一次拍摄中捕捉到4张不同偏振角度的线偏振图像,可以直接从捕获的偏振图像中计算出线偏振度(DoLP)和线偏振角(AoLP),这在基于偏振视觉的应用中非常有用。然而,由于片上微型偏振器阻挡了部分光线,因此传感器通常需要更长的曝光时间,因此捕获的偏振图像容易因相机抖动而产生运动模糊,从而导致计算的DoLP和AoLP明显下降。传统图像去模糊方法在处理偏振图像时,由于只关注去模糊而不考虑偏振约束,往往会导致图像去模糊性能下降。本文提出了一种极化图像去模糊管道,采用分治策略将该问题明确分解为两个较小的病态子问题,并设计了两阶段神经网络分别处理这两个子问题,以极化感知的方式解决该问题。实验结果表明,我们的方法在合成图像和真实图像上都达到了最先进的性能,并且可以提高基于偏振的视觉应用的性能,例如图像去雾和反射去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Deblur Polarized Images

A polarization camera can capture four linear polarized images with different polarizer angles in a single shot, which is useful in polarization-based vision applications since the degree of linear polarization (DoLP) and the angle of linear polarization (AoLP) can be directly computed from the captured polarized images. However, since the on-chip micro-polarizers block part of the light so that the sensor often requires a longer exposure time, the captured polarized images are prone to motion blur caused by camera shakes, leading to noticeable degradation in the computed DoLP and AoLP. Deblurring methods for conventional images often show degraded performance when handling the polarized images since they only focus on deblurring without considering the polarization constraints. In this paper, we propose a polarized image deblurring pipeline to solve the problem in a polarization-aware manner by adopting a divide-and-conquer strategy to explicitly decompose the problem into two less ill-posed sub-problems, and design a two-stage neural network to handle the two sub-problems respectively. Experimental results show that our method achieves state-of-the-art performance on both synthetic and real-world images, and can improve the performance of polarization-based vision applications such as image dehazing and reflection removal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信