{"title":"RobusTAD:基于参考面板的嵌套拓扑关联域注释","authors":"Yanlin Zhang, Rola Dali, Mathieu Blanchette","doi":"10.1186/s13059-025-03568-9","DOIUrl":null,"url":null,"abstract":"Topologically associating domains (TADs) are fundamental units of 3D genomes and play essential roles in gene regulation. Hi-C data suggests a hierarchical organization of TADs. Accurately annotating nested TADs from Hi-C data remains challenging, both in terms of the precise identification of boundaries and the correct inference of hierarchies. While domain boundary is relatively well conserved across cells, few approaches have taken advantage of this fact. Here, we present RobusTAD to annotate TAD hierarchies. It incorporates additional Hi-C data to refine boundaries annotated from the study sample. RobusTAD outperforms existing tools at boundary and domain annotation across several benchmarking tasks.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"55 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RobusTAD: reference panel based annotation of nested topologically associating domains\",\"authors\":\"Yanlin Zhang, Rola Dali, Mathieu Blanchette\",\"doi\":\"10.1186/s13059-025-03568-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topologically associating domains (TADs) are fundamental units of 3D genomes and play essential roles in gene regulation. Hi-C data suggests a hierarchical organization of TADs. Accurately annotating nested TADs from Hi-C data remains challenging, both in terms of the precise identification of boundaries and the correct inference of hierarchies. While domain boundary is relatively well conserved across cells, few approaches have taken advantage of this fact. Here, we present RobusTAD to annotate TAD hierarchies. It incorporates additional Hi-C data to refine boundaries annotated from the study sample. RobusTAD outperforms existing tools at boundary and domain annotation across several benchmarking tasks.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03568-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03568-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
RobusTAD: reference panel based annotation of nested topologically associating domains
Topologically associating domains (TADs) are fundamental units of 3D genomes and play essential roles in gene regulation. Hi-C data suggests a hierarchical organization of TADs. Accurately annotating nested TADs from Hi-C data remains challenging, both in terms of the precise identification of boundaries and the correct inference of hierarchies. While domain boundary is relatively well conserved across cells, few approaches have taken advantage of this fact. Here, we present RobusTAD to annotate TAD hierarchies. It incorporates additional Hi-C data to refine boundaries annotated from the study sample. RobusTAD outperforms existing tools at boundary and domain annotation across several benchmarking tasks.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.