伽马射线暴的高能量时间滞后

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
C. Maraventano, G. Ghirlanda, L. Nava, T. Di Salvo, W. Leone, R. Iaria, L. Burderi, A. Tsvetkova
{"title":"伽马射线暴的高能量时间滞后","authors":"C. Maraventano, G. Ghirlanda, L. Nava, T. Di Salvo, W. Leone, R. Iaria, L. Burderi, A. Tsvetkova","doi":"10.1051/0004-6361/202554053","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Positive lags between the arrival time of different photon energies are commonly observed in the prompt phase of gamma-ray bursts (GRBs), where soft photons lag behind harder ones. However, a fraction of GRBs display the opposite behavior. In particular, <i>Fermi<i/> Large Area Telescope (LAT) observations revealed that high-energy photons are often characterized by a delayed onset.<i>Aims.<i/> We explore the potential of spectral lags as a diagnostic tool to identify distinct emission components or processes. By analyzing data from the <i>Fermi<i/> Gamma-ray Burst Monitor (GBM) and the LAT Low Energy (LLE) technique, we explore the connection between lag behavior and high-energy spectral properties.<i>Methods.<i/> We analyze a sample of 70 GRBs from the LLE catalog. Spectral lags are computed using the discrete correlation function method, considering light curves extracted in four different energy bands, from 10 keV to 100 MeV. Additionally, we compare LLE time lags with properties of the prompt emission and with the spectral behavior at high energies.<i>Results.<i/> Time lags computed across different energy bands distributed between 10 keV and 1 MeV are predominantly positive (76%) as a possible consequence of a hard-to-soft spectral evolution of the prompt spectrum. Lags between the LLE (30–100 MeV) and the GBM (10–100 keV) bands show a variety of behaviors: 40% are positive, while 37% are negative. Such negative lags may suggest the delayed emergence of an additional emission component dominating at high energies. Indeed, the spectral analysis of LLE data for 56 GRBs shows that negative lags are associated with an LLE spectral index typically harder than the high-energy power law identified in GBM data.<i>Conclusions.<i/> Spectral lags of LLE data can be exploited as a diagnostic tool to identify and characterize emission components in GRBs, highlighting the importance of combining temporal and spectral analyses to advance our understanding of GRB emission mechanisms.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"32 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High energy time lags of gamma-ray bursts\",\"authors\":\"C. Maraventano, G. Ghirlanda, L. Nava, T. Di Salvo, W. Leone, R. Iaria, L. Burderi, A. Tsvetkova\",\"doi\":\"10.1051/0004-6361/202554053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Context.<i/> Positive lags between the arrival time of different photon energies are commonly observed in the prompt phase of gamma-ray bursts (GRBs), where soft photons lag behind harder ones. However, a fraction of GRBs display the opposite behavior. In particular, <i>Fermi<i/> Large Area Telescope (LAT) observations revealed that high-energy photons are often characterized by a delayed onset.<i>Aims.<i/> We explore the potential of spectral lags as a diagnostic tool to identify distinct emission components or processes. By analyzing data from the <i>Fermi<i/> Gamma-ray Burst Monitor (GBM) and the LAT Low Energy (LLE) technique, we explore the connection between lag behavior and high-energy spectral properties.<i>Methods.<i/> We analyze a sample of 70 GRBs from the LLE catalog. Spectral lags are computed using the discrete correlation function method, considering light curves extracted in four different energy bands, from 10 keV to 100 MeV. Additionally, we compare LLE time lags with properties of the prompt emission and with the spectral behavior at high energies.<i>Results.<i/> Time lags computed across different energy bands distributed between 10 keV and 1 MeV are predominantly positive (76%) as a possible consequence of a hard-to-soft spectral evolution of the prompt spectrum. Lags between the LLE (30–100 MeV) and the GBM (10–100 keV) bands show a variety of behaviors: 40% are positive, while 37% are negative. Such negative lags may suggest the delayed emergence of an additional emission component dominating at high energies. Indeed, the spectral analysis of LLE data for 56 GRBs shows that negative lags are associated with an LLE spectral index typically harder than the high-energy power law identified in GBM data.<i>Conclusions.<i/> Spectral lags of LLE data can be exploited as a diagnostic tool to identify and characterize emission components in GRBs, highlighting the importance of combining temporal and spectral analyses to advance our understanding of GRB emission mechanisms.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202554053\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202554053","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

上下文。不同光子能量到达时间之间的正滞后通常在伽马射线暴(GRBs)的提示阶段被观察到,软光子落后于硬光子。然而,一小部分grb表现出相反的行为。特别是,费米大面积望远镜(LAT)的观测揭示了高能光子通常具有延迟出现的特征。我们探索光谱滞后作为诊断工具的潜力,以识别不同的发射成分或过程。通过分析费米伽玛射线暴监测器(GBM)和LAT低能(LLE)技术的数据,我们探讨了滞后行为与高能光谱特性之间的联系。我们分析了来自LLE星表的70个grb样本。考虑从10 keV到100 MeV四个不同能带提取的光曲线,采用离散相关函数法计算光谱滞后。此外,我们还比较了LLE时间滞后与瞬发特性和高能量下的光谱行为。分布在10 keV和1 MeV之间的不同能带上计算的时间滞后主要是正的(76%),这可能是提示谱从硬到软的光谱演化的结果。LLE (30-100 MeV)和GBM (10-100 keV)波段之间的滞后表现出多种行为:40%为正,37%为负。这种负滞后可能表明,在高能量下占主导地位的额外发射成分的出现被推迟了。事实上,56个grb的LLE数据的光谱分析表明,负滞后与LLE光谱指数相关,通常比GBM数据中确定的高能幂律更难。LLE数据的光谱滞后可以作为一种诊断工具来识别和表征GRB的发射成分,强调了将时间和光谱分析相结合对于提高我们对GRB发射机制的理解的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High energy time lags of gamma-ray bursts
Context. Positive lags between the arrival time of different photon energies are commonly observed in the prompt phase of gamma-ray bursts (GRBs), where soft photons lag behind harder ones. However, a fraction of GRBs display the opposite behavior. In particular, Fermi Large Area Telescope (LAT) observations revealed that high-energy photons are often characterized by a delayed onset.Aims. We explore the potential of spectral lags as a diagnostic tool to identify distinct emission components or processes. By analyzing data from the Fermi Gamma-ray Burst Monitor (GBM) and the LAT Low Energy (LLE) technique, we explore the connection between lag behavior and high-energy spectral properties.Methods. We analyze a sample of 70 GRBs from the LLE catalog. Spectral lags are computed using the discrete correlation function method, considering light curves extracted in four different energy bands, from 10 keV to 100 MeV. Additionally, we compare LLE time lags with properties of the prompt emission and with the spectral behavior at high energies.Results. Time lags computed across different energy bands distributed between 10 keV and 1 MeV are predominantly positive (76%) as a possible consequence of a hard-to-soft spectral evolution of the prompt spectrum. Lags between the LLE (30–100 MeV) and the GBM (10–100 keV) bands show a variety of behaviors: 40% are positive, while 37% are negative. Such negative lags may suggest the delayed emergence of an additional emission component dominating at high energies. Indeed, the spectral analysis of LLE data for 56 GRBs shows that negative lags are associated with an LLE spectral index typically harder than the high-energy power law identified in GBM data.Conclusions. Spectral lags of LLE data can be exploited as a diagnostic tool to identify and characterize emission components in GRBs, highlighting the importance of combining temporal and spectral analyses to advance our understanding of GRB emission mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信