血管疾病中损伤相关分子模式(DAMPs)

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jacob Antonello,Partha Roy
{"title":"血管疾病中损伤相关分子模式(DAMPs)","authors":"Jacob Antonello,Partha Roy","doi":"10.1016/j.jbc.2025.110241","DOIUrl":null,"url":null,"abstract":"Research into the role of chronic sterile inflammation (i.e. a prolonged inflammatory state not caused by an infectious agent), in vascular disease progression has continued to grow over the last few decades. DAMPs have a critical role in this research due to their ability to link stress-causing cardiovascular risk factors to inflammatory phenotypes seen in vascular disease. In this mini-review, we will briefly summarize the DAMPs and receptor signaling pathways that have been extensively studied in the context of vascular disease, including TLRs, RAGE, cGAS-STING, and the NLRP3 inflammasome. In particular, we will discuss how these pathways can promote the release of pro-inflammatory cytokines and chemokines as well as vascular remodeling. Next, we will summarize the results of studies which have linked the various pro-inflammatory effects of DAMPs with the phenotypes in the context of vascular diseases including atherosclerosis, fibrosis, aneurysm, ischemia, and hypertension. Finally, we will discuss some pre-clinical and clinical trials that have targeted DAMPs, their receptors, or the products of their signaling pathways, and discuss the outlook and future directions for the field at large.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"126 1","pages":"110241"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage-Associated Molecular Patterns (DAMPs) In Vascular Diseases.\",\"authors\":\"Jacob Antonello,Partha Roy\",\"doi\":\"10.1016/j.jbc.2025.110241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research into the role of chronic sterile inflammation (i.e. a prolonged inflammatory state not caused by an infectious agent), in vascular disease progression has continued to grow over the last few decades. DAMPs have a critical role in this research due to their ability to link stress-causing cardiovascular risk factors to inflammatory phenotypes seen in vascular disease. In this mini-review, we will briefly summarize the DAMPs and receptor signaling pathways that have been extensively studied in the context of vascular disease, including TLRs, RAGE, cGAS-STING, and the NLRP3 inflammasome. In particular, we will discuss how these pathways can promote the release of pro-inflammatory cytokines and chemokines as well as vascular remodeling. Next, we will summarize the results of studies which have linked the various pro-inflammatory effects of DAMPs with the phenotypes in the context of vascular diseases including atherosclerosis, fibrosis, aneurysm, ischemia, and hypertension. Finally, we will discuss some pre-clinical and clinical trials that have targeted DAMPs, their receptors, or the products of their signaling pathways, and discuss the outlook and future directions for the field at large.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"126 1\",\"pages\":\"110241\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110241\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110241","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,对慢性无菌炎症(即不是由感染因子引起的长期炎症状态)在血管疾病进展中的作用的研究持续增长。DAMPs在这项研究中具有关键作用,因为它们能够将应激引起的心血管危险因素与血管疾病中的炎症表型联系起来。在这篇综述中,我们将简要总结在血管疾病中被广泛研究的DAMPs和受体信号通路,包括TLRs、RAGE、cGAS-STING和NLRP3炎症小体。特别是,我们将讨论这些途径如何促进促炎细胞因子和趋化因子的释放以及血管重塑。接下来,我们将总结DAMPs的各种促炎作用与血管疾病(包括动脉粥样硬化、纤维化、动脉瘤、缺血和高血压)的表型相关的研究结果。最后,我们将讨论一些针对DAMPs、其受体或其信号通路产物的临床前和临床试验,并讨论该领域的前景和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damage-Associated Molecular Patterns (DAMPs) In Vascular Diseases.
Research into the role of chronic sterile inflammation (i.e. a prolonged inflammatory state not caused by an infectious agent), in vascular disease progression has continued to grow over the last few decades. DAMPs have a critical role in this research due to their ability to link stress-causing cardiovascular risk factors to inflammatory phenotypes seen in vascular disease. In this mini-review, we will briefly summarize the DAMPs and receptor signaling pathways that have been extensively studied in the context of vascular disease, including TLRs, RAGE, cGAS-STING, and the NLRP3 inflammasome. In particular, we will discuss how these pathways can promote the release of pro-inflammatory cytokines and chemokines as well as vascular remodeling. Next, we will summarize the results of studies which have linked the various pro-inflammatory effects of DAMPs with the phenotypes in the context of vascular diseases including atherosclerosis, fibrosis, aneurysm, ischemia, and hypertension. Finally, we will discuss some pre-clinical and clinical trials that have targeted DAMPs, their receptors, or the products of their signaling pathways, and discuss the outlook and future directions for the field at large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信