自动注释的处置计数在新闻文章。

Simon Rodier, Dave Carter
{"title":"自动注释的处置计数在新闻文章。","authors":"Simon Rodier, Dave Carter","doi":"10.3233/SHTI250502","DOIUrl":null,"url":null,"abstract":"<p><p>News media aggregate and report disposition counts during crises: how many people are affected, suspected affected, have died, and have recovered or been recovered; and they tend to do so in a timely and trustworthy manner. We present and evaluate a method for identifying these counts in unstructured natural language text, supporting downstream tasks such as automatic creation of epidemic curves.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"327 ","pages":"906-907"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Annotation of Disposition Counts in News Articles.\",\"authors\":\"Simon Rodier, Dave Carter\",\"doi\":\"10.3233/SHTI250502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>News media aggregate and report disposition counts during crises: how many people are affected, suspected affected, have died, and have recovered or been recovered; and they tend to do so in a timely and trustworthy manner. We present and evaluate a method for identifying these counts in unstructured natural language text, supporting downstream tasks such as automatic creation of epidemic curves.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"327 \",\"pages\":\"906-907\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI250502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新闻媒体汇总并报道危机期间的处置情况:有多少人受影响、疑似受影响、死亡、康复或已康复;而且他们倾向于以一种及时和值得信赖的方式这样做。我们提出并评估了一种在非结构化自然语言文本中识别这些计数的方法,该方法支持下游任务,如自动创建流行曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Annotation of Disposition Counts in News Articles.

News media aggregate and report disposition counts during crises: how many people are affected, suspected affected, have died, and have recovered or been recovered; and they tend to do so in a timely and trustworthy manner. We present and evaluate a method for identifying these counts in unstructured natural language text, supporting downstream tasks such as automatic creation of epidemic curves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信