基于能力的医学教育叙事反馈分析中的人工智能研究综述

Sameer Asim Khan, Jamal Taiyara, Nabil Zary, Farah Otaki
{"title":"基于能力的医学教育叙事反馈分析中的人工智能研究综述","authors":"Sameer Asim Khan, Jamal Taiyara, Nabil Zary, Farah Otaki","doi":"10.3233/SHTI250637","DOIUrl":null,"url":null,"abstract":"<p><p>Competency-Based Medical Education (CBME) generates large volumes of qualitative data in the form of narrative feedback. Traditional qualitative analysis methods face limitations in managing this data's scale and complexity. This review explores the applications, impact, and challenges of Artificial Intelligence (AI), particularly Natural Language Processing (NLP), for analyzing and visualizing medical student performance feedback within CBME contexts. We conducted a comprehensive search of PubMed and Google Scholar databases, identifying key studies that met our inclusion criteria. Our findings highlight how AI can enhance traditional analysis methods by automating theme extraction, reducing educator workload, and improving feedback evaluation processes. The review also addresses challenges associated with AI implementations, including contextual limitations and the need for human oversight. We conclude by emphasizing AI's transformative potential in CBME while identifying critical areas for further research to ensure effective integration into educational workflows.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"327 ","pages":"1423-1427"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Narrative Feedback Analysis for Competency-Based Medical Education: A Review.\",\"authors\":\"Sameer Asim Khan, Jamal Taiyara, Nabil Zary, Farah Otaki\",\"doi\":\"10.3233/SHTI250637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Competency-Based Medical Education (CBME) generates large volumes of qualitative data in the form of narrative feedback. Traditional qualitative analysis methods face limitations in managing this data's scale and complexity. This review explores the applications, impact, and challenges of Artificial Intelligence (AI), particularly Natural Language Processing (NLP), for analyzing and visualizing medical student performance feedback within CBME contexts. We conducted a comprehensive search of PubMed and Google Scholar databases, identifying key studies that met our inclusion criteria. Our findings highlight how AI can enhance traditional analysis methods by automating theme extraction, reducing educator workload, and improving feedback evaluation processes. The review also addresses challenges associated with AI implementations, including contextual limitations and the need for human oversight. We conclude by emphasizing AI's transformative potential in CBME while identifying critical areas for further research to ensure effective integration into educational workflows.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"327 \",\"pages\":\"1423-1427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI250637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以能力为基础的医学教育(CBME)以叙事反馈的形式产生大量定性数据。传统的定性分析方法在管理这些数据的规模和复杂性方面存在局限性。这篇综述探讨了人工智能(AI)的应用、影响和挑战,特别是自然语言处理(NLP),在CBME背景下分析和可视化医学生的表现反馈。我们对PubMed和谷歌Scholar数据库进行了全面的搜索,确定了符合我们纳入标准的关键研究。我们的研究结果强调了人工智能如何通过自动化主题提取、减少教育工作者的工作量和改进反馈评估过程来增强传统的分析方法。该审查还解决了与人工智能实施相关的挑战,包括环境限制和人类监督的需要。最后,我们强调了人工智能在CBME中的变革潜力,同时确定了进一步研究的关键领域,以确保有效地融入教育工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence in Narrative Feedback Analysis for Competency-Based Medical Education: A Review.

Competency-Based Medical Education (CBME) generates large volumes of qualitative data in the form of narrative feedback. Traditional qualitative analysis methods face limitations in managing this data's scale and complexity. This review explores the applications, impact, and challenges of Artificial Intelligence (AI), particularly Natural Language Processing (NLP), for analyzing and visualizing medical student performance feedback within CBME contexts. We conducted a comprehensive search of PubMed and Google Scholar databases, identifying key studies that met our inclusion criteria. Our findings highlight how AI can enhance traditional analysis methods by automating theme extraction, reducing educator workload, and improving feedback evaluation processes. The review also addresses challenges associated with AI implementations, including contextual limitations and the need for human oversight. We conclude by emphasizing AI's transformative potential in CBME while identifying critical areas for further research to ensure effective integration into educational workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信