Siria Pasini, Steffen Ringgaard, Tau Vendelboe, Leyre Garcia-Ruiz, Anika Strittmatter, Giulia Villa, Anish Raj, Rebeca Echeverria-Chasco, Michela Bozzetto, Paolo Brambilla, Malene Aastrup, Esben S S Hansen, Luisa Pierotti, Matteo Renzulli, Susan T Francis, Frank G Zöllner, Christoffer Laustsen, Maria A Fernandez-Seara, Anna Caroli
{"title":"跨1.5 T和3t扫描仪的多中心和多供应商评估研究(第2部分):ISMRM/NIST MR幻影中的T1和T2标准化。","authors":"Siria Pasini, Steffen Ringgaard, Tau Vendelboe, Leyre Garcia-Ruiz, Anika Strittmatter, Giulia Villa, Anish Raj, Rebeca Echeverria-Chasco, Michela Bozzetto, Paolo Brambilla, Malene Aastrup, Esben S S Hansen, Luisa Pierotti, Matteo Renzulli, Susan T Francis, Frank G Zöllner, Christoffer Laustsen, Maria A Fernandez-Seara, Anna Caroli","doi":"10.1007/s10334-025-01260-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess multi-site and multi-vendor accuracy, and intra- and inter-scanner variability of T1 and T2 measurements using the ISMRM/NIST System MRI phantom at room temperature.</p><p><strong>Materials and methods: </strong>T1 and T2 measurements were acquired using standardized NIST protocols on 13 scanners (1.5 T and 3 T) from 3 vendors at 7 sites and compared with reference values at room temperature. Pearson's correlation (r) and accuracy error were used for comparison with reference values, while inter-scanner agreement was assessed using the coefficient of variation (CV%). Short-term reproducibility was evaluated using Bland-Altman plots and precision error. Generalized linear mixed models and post hoc tests (α = 0.05) were adopted to compare accuracy and precision across field strengths, vendors, and scanners. T2 measurements were corrected with StimFit toolbox for stimulated echo compensation.</p><p><strong>Results: </strong>T1 and T2 measurements had excellent correlation with reference values at both field strengths. Stimfit significantly improved T2 accuracy in the renal range for 9 of 13 scanners. Short-term reproducibility (limits of agreement < 10%) and inter-scanner agreement were good (median CV < 7%) for both T1 and T2 values. Inter-scanner CV was < 5% in the renal range for both parameters.</p><p><strong>Discussion: </strong>These findings support the need of scanner evaluation processes to ensure reliable T1-T2 measurements in multi-center MRI studies.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-center and multi-vendor evaluation study across 1.5 T and 3 T scanners (part 2): T1 and T2 standardization in the ISMRM/NIST MR phantom.\",\"authors\":\"Siria Pasini, Steffen Ringgaard, Tau Vendelboe, Leyre Garcia-Ruiz, Anika Strittmatter, Giulia Villa, Anish Raj, Rebeca Echeverria-Chasco, Michela Bozzetto, Paolo Brambilla, Malene Aastrup, Esben S S Hansen, Luisa Pierotti, Matteo Renzulli, Susan T Francis, Frank G Zöllner, Christoffer Laustsen, Maria A Fernandez-Seara, Anna Caroli\",\"doi\":\"10.1007/s10334-025-01260-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To assess multi-site and multi-vendor accuracy, and intra- and inter-scanner variability of T1 and T2 measurements using the ISMRM/NIST System MRI phantom at room temperature.</p><p><strong>Materials and methods: </strong>T1 and T2 measurements were acquired using standardized NIST protocols on 13 scanners (1.5 T and 3 T) from 3 vendors at 7 sites and compared with reference values at room temperature. Pearson's correlation (r) and accuracy error were used for comparison with reference values, while inter-scanner agreement was assessed using the coefficient of variation (CV%). Short-term reproducibility was evaluated using Bland-Altman plots and precision error. Generalized linear mixed models and post hoc tests (α = 0.05) were adopted to compare accuracy and precision across field strengths, vendors, and scanners. T2 measurements were corrected with StimFit toolbox for stimulated echo compensation.</p><p><strong>Results: </strong>T1 and T2 measurements had excellent correlation with reference values at both field strengths. Stimfit significantly improved T2 accuracy in the renal range for 9 of 13 scanners. Short-term reproducibility (limits of agreement < 10%) and inter-scanner agreement were good (median CV < 7%) for both T1 and T2 values. Inter-scanner CV was < 5% in the renal range for both parameters.</p><p><strong>Discussion: </strong>These findings support the need of scanner evaluation processes to ensure reliable T1-T2 measurements in multi-center MRI studies.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-025-01260-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01260-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Multi-center and multi-vendor evaluation study across 1.5 T and 3 T scanners (part 2): T1 and T2 standardization in the ISMRM/NIST MR phantom.
Objective: To assess multi-site and multi-vendor accuracy, and intra- and inter-scanner variability of T1 and T2 measurements using the ISMRM/NIST System MRI phantom at room temperature.
Materials and methods: T1 and T2 measurements were acquired using standardized NIST protocols on 13 scanners (1.5 T and 3 T) from 3 vendors at 7 sites and compared with reference values at room temperature. Pearson's correlation (r) and accuracy error were used for comparison with reference values, while inter-scanner agreement was assessed using the coefficient of variation (CV%). Short-term reproducibility was evaluated using Bland-Altman plots and precision error. Generalized linear mixed models and post hoc tests (α = 0.05) were adopted to compare accuracy and precision across field strengths, vendors, and scanners. T2 measurements were corrected with StimFit toolbox for stimulated echo compensation.
Results: T1 and T2 measurements had excellent correlation with reference values at both field strengths. Stimfit significantly improved T2 accuracy in the renal range for 9 of 13 scanners. Short-term reproducibility (limits of agreement < 10%) and inter-scanner agreement were good (median CV < 7%) for both T1 and T2 values. Inter-scanner CV was < 5% in the renal range for both parameters.
Discussion: These findings support the need of scanner evaluation processes to ensure reliable T1-T2 measurements in multi-center MRI studies.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.