{"title":"低密度脂蛋白通过PPAR通路调控肠道干细胞稳态。","authors":"Ruicheng Shi, Wei Lu, Zhiming Zhao, Bo Wang","doi":"10.1016/j.jlr.2025.100826","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological studies have highlighted a strong association between hyperlipidemia and an increased risk of cancer in the gut. Intestinal stem cells (ISCs) have been demonstrated as the cells of origin for tumorigenesis in the gut. However, the impact of hyperlipidemia on ISC homeostasis remains unclear. Here, we show that hyperlipidemia induced by low-density lipoprotein receptor (Ldlr) deficiency enhances ISC proliferation in vivo. Additionally, LDL treatment impairs organoid survival but increases ISC stemness ex vivo, as evidenced by the formation of poorly differentiated spheroid and higher ISC self-renewal capacity. Mechanistically, LDL treatment activates PPAR pathways, and pharmacological inhibition of PPAR and its downstream targets, including CPT1A and PDK4, mitigates the effect of LDL on ISCs. These findings demonstrate that hyperlipidemia modulates ISC homeostasis, providing new insights into the mechanism linking hyperlipidemia with tumorigenesis in the gut.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100826"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-density Lipoprotein Regulates Intestinal Stem Cell Homeostasis via PPAR Pathway.\",\"authors\":\"Ruicheng Shi, Wei Lu, Zhiming Zhao, Bo Wang\",\"doi\":\"10.1016/j.jlr.2025.100826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidemiological studies have highlighted a strong association between hyperlipidemia and an increased risk of cancer in the gut. Intestinal stem cells (ISCs) have been demonstrated as the cells of origin for tumorigenesis in the gut. However, the impact of hyperlipidemia on ISC homeostasis remains unclear. Here, we show that hyperlipidemia induced by low-density lipoprotein receptor (Ldlr) deficiency enhances ISC proliferation in vivo. Additionally, LDL treatment impairs organoid survival but increases ISC stemness ex vivo, as evidenced by the formation of poorly differentiated spheroid and higher ISC self-renewal capacity. Mechanistically, LDL treatment activates PPAR pathways, and pharmacological inhibition of PPAR and its downstream targets, including CPT1A and PDK4, mitigates the effect of LDL on ISCs. These findings demonstrate that hyperlipidemia modulates ISC homeostasis, providing new insights into the mechanism linking hyperlipidemia with tumorigenesis in the gut.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100826\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2025.100826\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100826","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Low-density Lipoprotein Regulates Intestinal Stem Cell Homeostasis via PPAR Pathway.
Epidemiological studies have highlighted a strong association between hyperlipidemia and an increased risk of cancer in the gut. Intestinal stem cells (ISCs) have been demonstrated as the cells of origin for tumorigenesis in the gut. However, the impact of hyperlipidemia on ISC homeostasis remains unclear. Here, we show that hyperlipidemia induced by low-density lipoprotein receptor (Ldlr) deficiency enhances ISC proliferation in vivo. Additionally, LDL treatment impairs organoid survival but increases ISC stemness ex vivo, as evidenced by the formation of poorly differentiated spheroid and higher ISC self-renewal capacity. Mechanistically, LDL treatment activates PPAR pathways, and pharmacological inhibition of PPAR and its downstream targets, including CPT1A and PDK4, mitigates the effect of LDL on ISCs. These findings demonstrate that hyperlipidemia modulates ISC homeostasis, providing new insights into the mechanism linking hyperlipidemia with tumorigenesis in the gut.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.