整合单细胞与转录组-蛋白质组孟德尔随机化揭示结直肠癌靶点。

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Song Wang, Xin Yao, Shenshen Li, Shanshan Wang, Xuyu Huang, Jing Zhou, Xiao Li, Jieying Wen, Weixuan Lan, Yunsi Huang, Hao Li, Yunlong Sun, Xiaoqian Zhao, Qiaoling Chen, Xuedong Han, Ziming Zhu, Xinyue Zhang, Tao Zhang
{"title":"整合单细胞与转录组-蛋白质组孟德尔随机化揭示结直肠癌靶点。","authors":"Song Wang, Xin Yao, Shenshen Li, Shanshan Wang, Xuyu Huang, Jing Zhou, Xiao Li, Jieying Wen, Weixuan Lan, Yunsi Huang, Hao Li, Yunlong Sun, Xiaoqian Zhao, Qiaoling Chen, Xuedong Han, Ziming Zhu, Xinyue Zhang, Tao Zhang","doi":"10.1007/s12672-025-02636-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal carcinogenesis involves dynamic interactions between genetic susceptibility and cellular heterogeneity, yet current studies rarely disentangle causal genes from passive associations. While GWAS have mapped numerous risk loci, only a minority colocalize with eQTL/pQTL. A multi-omics framework combining single-cell transcriptomics, transcriptomics, proteomics, and MR is urgently needed to resolve cell-type-specific drivers of colorectal cancer pathogenesis.</p><p><strong>Methods: </strong>We integrated GWAS data, eQTL data, pQTL data, and single-cell RNA sequencing differential gene expression profiles from public databases. Subsequent batch Two-sample Mendelian randomization and further SMR analysis aimed to identify key genes in the pathogenesis of colorectal cancer.</p><p><strong>Results: </strong>Cluster analysis identified 4909 DEGs across various cell types. We discovered that 428 DEGs had a causal association with colorectal cancer through eQTL, of which 38 genes met the FDR statistical standards, and four of these genes (CTSF, PCSK7, LYZ, LMAN2L) also had causal associations through pQTL. SMR analysis confirmed the reliability of PCSK7 as a disease target.</p><p><strong>Conclusion: </strong>By integrating single-cell data, transcriptomic data, proteomic data and GWAS data for MR analysis, we identified CTSF, PCSK7, LYZ, LMAN2L as potential targets for colorectal cancer.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"794"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085524/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating single-cell with transcriptome-proteome Mendelian randomization reveals colorectal cancer targets.\",\"authors\":\"Song Wang, Xin Yao, Shenshen Li, Shanshan Wang, Xuyu Huang, Jing Zhou, Xiao Li, Jieying Wen, Weixuan Lan, Yunsi Huang, Hao Li, Yunlong Sun, Xiaoqian Zhao, Qiaoling Chen, Xuedong Han, Ziming Zhu, Xinyue Zhang, Tao Zhang\",\"doi\":\"10.1007/s12672-025-02636-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Colorectal carcinogenesis involves dynamic interactions between genetic susceptibility and cellular heterogeneity, yet current studies rarely disentangle causal genes from passive associations. While GWAS have mapped numerous risk loci, only a minority colocalize with eQTL/pQTL. A multi-omics framework combining single-cell transcriptomics, transcriptomics, proteomics, and MR is urgently needed to resolve cell-type-specific drivers of colorectal cancer pathogenesis.</p><p><strong>Methods: </strong>We integrated GWAS data, eQTL data, pQTL data, and single-cell RNA sequencing differential gene expression profiles from public databases. Subsequent batch Two-sample Mendelian randomization and further SMR analysis aimed to identify key genes in the pathogenesis of colorectal cancer.</p><p><strong>Results: </strong>Cluster analysis identified 4909 DEGs across various cell types. We discovered that 428 DEGs had a causal association with colorectal cancer through eQTL, of which 38 genes met the FDR statistical standards, and four of these genes (CTSF, PCSK7, LYZ, LMAN2L) also had causal associations through pQTL. SMR analysis confirmed the reliability of PCSK7 as a disease target.</p><p><strong>Conclusion: </strong>By integrating single-cell data, transcriptomic data, proteomic data and GWAS data for MR analysis, we identified CTSF, PCSK7, LYZ, LMAN2L as potential targets for colorectal cancer.</p>\",\"PeriodicalId\":11148,\"journal\":{\"name\":\"Discover. Oncology\",\"volume\":\"16 1\",\"pages\":\"794\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085524/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover. Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-025-02636-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02636-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:结直肠癌的发生涉及遗传易感性和细胞异质性之间的动态相互作用,但目前的研究很少将因果基因从被动关联中分离出来。虽然GWAS已经绘制了大量的风险位点,但只有少数与eQTL/pQTL共定位。迫切需要一个结合单细胞转录组学、转录组学、蛋白质组学和MR的多组学框架来解决结直肠癌发病的细胞类型特异性驱动因素。方法:我们整合了GWAS数据、eQTL数据、pQTL数据以及来自公共数据库的单细胞RNA测序差异基因表达谱。随后的批量双样本孟德尔随机化和进一步的SMR分析旨在确定结直肠癌发病机制中的关键基因。结果:聚类分析在不同细胞类型中鉴定出4909个DEGs。我们通过eQTL发现428个基因与结直肠癌存在因果关系,其中38个基因符合FDR统计标准,其中4个基因(CTSF、PCSK7、LYZ、LMAN2L)也通过pQTL存在因果关系。SMR分析证实了PCSK7作为疾病靶点的可靠性。结论:通过整合单细胞数据、转录组数据、蛋白质组数据和GWAS数据进行MR分析,我们确定了CTSF、PCSK7、LYZ、LMAN2L是结直肠癌的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating single-cell with transcriptome-proteome Mendelian randomization reveals colorectal cancer targets.

Background: Colorectal carcinogenesis involves dynamic interactions between genetic susceptibility and cellular heterogeneity, yet current studies rarely disentangle causal genes from passive associations. While GWAS have mapped numerous risk loci, only a minority colocalize with eQTL/pQTL. A multi-omics framework combining single-cell transcriptomics, transcriptomics, proteomics, and MR is urgently needed to resolve cell-type-specific drivers of colorectal cancer pathogenesis.

Methods: We integrated GWAS data, eQTL data, pQTL data, and single-cell RNA sequencing differential gene expression profiles from public databases. Subsequent batch Two-sample Mendelian randomization and further SMR analysis aimed to identify key genes in the pathogenesis of colorectal cancer.

Results: Cluster analysis identified 4909 DEGs across various cell types. We discovered that 428 DEGs had a causal association with colorectal cancer through eQTL, of which 38 genes met the FDR statistical standards, and four of these genes (CTSF, PCSK7, LYZ, LMAN2L) also had causal associations through pQTL. SMR analysis confirmed the reliability of PCSK7 as a disease target.

Conclusion: By integrating single-cell data, transcriptomic data, proteomic data and GWAS data for MR analysis, we identified CTSF, PCSK7, LYZ, LMAN2L as potential targets for colorectal cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信