代谢功能障碍相关的脂肪性肝病中微生物群侵占和肠-脂肪-肝轴

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Daria Igudesman, GongXin Yu, Charlene Dauriat, Torfay Roman, Maryam R Kashi, Elizabeth Blakley, Benoit Chassaing, Karen D Corbin
{"title":"代谢功能障碍相关的脂肪性肝病中微生物群侵占和肠-脂肪-肝轴","authors":"Daria Igudesman, GongXin Yu, Charlene Dauriat, Torfay Roman, Maryam R Kashi, Elizabeth Blakley, Benoit Chassaing, Karen D Corbin","doi":"10.1152/ajpgi.00381.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) affects ∼40% of adults, but causal mechanisms remain elusive. Preclinical models implicate the gut microbiota in MASLD pathogenesis, yet translation to humans is hampered by variability in microbial composition. We addressed this gap by investigating whether stable, quantitative gut phenotypes, including microbiota encroachment, are pathological features of MASLD. Sigmoid colon biopsies were collected from participants with and without imaging-defined MASLD. Mucus immunostaining was paired with fluorescent in situ hybridization to image and quantify the distance separating bacteria from the colonic epithelium (i.e., encroachment). Secondary outcomes included intestinal permeability, colon histopathology, and insulin resistance. RNA sequencing was combined with weighted gene network correlation analysis to explore correlations between colonic gene expression and clinical endpoints. Microbiota encroachment did not differentiate participants with MASLD (<i>n</i> = 13 with simple steatosis, <i>n</i> = 13 with fibrosis stage <4) from controls (<i>n</i> = 12; <i>P</i> = 0.20). Circulating lipopolysaccharide and flagellin-specific immunoglobulins (intestinal permeability), and colon histopathology were similar across cohorts (<i>P</i> = 0.23, <i>P</i> = 0.11, and <i>P</i> = 0.73, respectively). Microbiota encroachment and adipose tissue insulin resistance (Adipo-IR) were correlated with a colonic gene network regulating insulin and lipid metabolism (Pearson's <i>r</i> = -0.33, <i>P</i> = 0.04 and <i>r</i> = 0.47, <i>P</i> = 0.003, respectively). Pathway analysis of this network revealed genes involved in hepatic steatosis (<i>P</i> = 3.95E-06) and liver cell proliferation (<i>P</i> = 0.0003), suggesting a gut-adipose-liver cross talk. Microbiota encroachment and related gut phenotypes do not correlate with MASLD severity. However, colonic expression of genes related to insulin signaling and lipid metabolism links microbiota encroachment to Adipo-IR and MASLD. Future research should investigate how colonic gene products interact with microbiota-focused MASLD mechanisms.<b>NEW & NOTEWORTHY</b> In a first-in-human study, we observed that colonic expression of insulin and lipid-related genes may bridge the pathophysiology of colonic microbiota encroachment with adipose tissue insulin resistance and metabolic dysfunction-associated steatotic liver disease.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G201-G214"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiota encroachment and a gut-adipose-liver axis in metabolic dysfunction-associated steatotic liver disease.\",\"authors\":\"Daria Igudesman, GongXin Yu, Charlene Dauriat, Torfay Roman, Maryam R Kashi, Elizabeth Blakley, Benoit Chassaing, Karen D Corbin\",\"doi\":\"10.1152/ajpgi.00381.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) affects ∼40% of adults, but causal mechanisms remain elusive. Preclinical models implicate the gut microbiota in MASLD pathogenesis, yet translation to humans is hampered by variability in microbial composition. We addressed this gap by investigating whether stable, quantitative gut phenotypes, including microbiota encroachment, are pathological features of MASLD. Sigmoid colon biopsies were collected from participants with and without imaging-defined MASLD. Mucus immunostaining was paired with fluorescent in situ hybridization to image and quantify the distance separating bacteria from the colonic epithelium (i.e., encroachment). Secondary outcomes included intestinal permeability, colon histopathology, and insulin resistance. RNA sequencing was combined with weighted gene network correlation analysis to explore correlations between colonic gene expression and clinical endpoints. Microbiota encroachment did not differentiate participants with MASLD (<i>n</i> = 13 with simple steatosis, <i>n</i> = 13 with fibrosis stage <4) from controls (<i>n</i> = 12; <i>P</i> = 0.20). Circulating lipopolysaccharide and flagellin-specific immunoglobulins (intestinal permeability), and colon histopathology were similar across cohorts (<i>P</i> = 0.23, <i>P</i> = 0.11, and <i>P</i> = 0.73, respectively). Microbiota encroachment and adipose tissue insulin resistance (Adipo-IR) were correlated with a colonic gene network regulating insulin and lipid metabolism (Pearson's <i>r</i> = -0.33, <i>P</i> = 0.04 and <i>r</i> = 0.47, <i>P</i> = 0.003, respectively). Pathway analysis of this network revealed genes involved in hepatic steatosis (<i>P</i> = 3.95E-06) and liver cell proliferation (<i>P</i> = 0.0003), suggesting a gut-adipose-liver cross talk. Microbiota encroachment and related gut phenotypes do not correlate with MASLD severity. However, colonic expression of genes related to insulin signaling and lipid metabolism links microbiota encroachment to Adipo-IR and MASLD. Future research should investigate how colonic gene products interact with microbiota-focused MASLD mechanisms.<b>NEW & NOTEWORTHY</b> In a first-in-human study, we observed that colonic expression of insulin and lipid-related genes may bridge the pathophysiology of colonic microbiota encroachment with adipose tissue insulin resistance and metabolic dysfunction-associated steatotic liver disease.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G201-G214\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00381.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00381.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:代谢功能障碍相关的脂肪变性肝病(MASLD)影响约40%的成年人,但病因机制尚不清楚。临床前模型暗示肠道微生物群与MASLD发病机制有关,但微生物组成的可变性阻碍了对人类的转化。我们通过研究稳定、定量的肠道表型(包括微生物群侵蚀)是否是MASLD的病理特征来解决这一差距。方法:从有或没有影像学定义的MASLD的参与者中收集乙状结肠活检。黏液免疫染色与荧光原位杂交配对,以成像和量化细菌与结肠上皮的分离距离(即侵入)。次要结局包括肠通透性、结肠组织病理学和胰岛素抵抗。结合rna测序和加权基因网络相关分析,探讨结肠基因表达与临床终点的相关性。结果:微生物群侵入不能区分MASLD患者(n=13伴单纯性脂肪变性,n=13伴纤维化)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbiota encroachment and a gut-adipose-liver axis in metabolic dysfunction-associated steatotic liver disease.

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects ∼40% of adults, but causal mechanisms remain elusive. Preclinical models implicate the gut microbiota in MASLD pathogenesis, yet translation to humans is hampered by variability in microbial composition. We addressed this gap by investigating whether stable, quantitative gut phenotypes, including microbiota encroachment, are pathological features of MASLD. Sigmoid colon biopsies were collected from participants with and without imaging-defined MASLD. Mucus immunostaining was paired with fluorescent in situ hybridization to image and quantify the distance separating bacteria from the colonic epithelium (i.e., encroachment). Secondary outcomes included intestinal permeability, colon histopathology, and insulin resistance. RNA sequencing was combined with weighted gene network correlation analysis to explore correlations between colonic gene expression and clinical endpoints. Microbiota encroachment did not differentiate participants with MASLD (n = 13 with simple steatosis, n = 13 with fibrosis stage <4) from controls (n = 12; P = 0.20). Circulating lipopolysaccharide and flagellin-specific immunoglobulins (intestinal permeability), and colon histopathology were similar across cohorts (P = 0.23, P = 0.11, and P = 0.73, respectively). Microbiota encroachment and adipose tissue insulin resistance (Adipo-IR) were correlated with a colonic gene network regulating insulin and lipid metabolism (Pearson's r = -0.33, P = 0.04 and r = 0.47, P = 0.003, respectively). Pathway analysis of this network revealed genes involved in hepatic steatosis (P = 3.95E-06) and liver cell proliferation (P = 0.0003), suggesting a gut-adipose-liver cross talk. Microbiota encroachment and related gut phenotypes do not correlate with MASLD severity. However, colonic expression of genes related to insulin signaling and lipid metabolism links microbiota encroachment to Adipo-IR and MASLD. Future research should investigate how colonic gene products interact with microbiota-focused MASLD mechanisms.NEW & NOTEWORTHY In a first-in-human study, we observed that colonic expression of insulin and lipid-related genes may bridge the pathophysiology of colonic microbiota encroachment with adipose tissue insulin resistance and metabolic dysfunction-associated steatotic liver disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信