Shirin Jahangirnejad, Jean-Philippe Côté, Daniel A. Lafontaine
{"title":"硫胺焦磷酸核糖开关受大肠杆菌赖氨酸衍生代谢转化产物的影响。","authors":"Shirin Jahangirnejad, Jean-Philippe Côté, Daniel A. Lafontaine","doi":"10.1016/j.jmb.2025.169207","DOIUrl":null,"url":null,"abstract":"<div><div>Riboswitches are 5′ untranslated regulators that control gene expression by specifically monitoring cellular metabolites. Metabolite binding to the riboswitch triggers the genetic regulation at the transcriptional or translational level. Riboswitches typically exhibit high affinities and strong discrimination against non-cognate metabolites, making them well suited to regulate gene expression. Importantly, despite the well characterized cellular processes ensuring metabolic conversion and recycling in bacteria, there is little information about how these processes influence riboswitch regulation mechanisms. Here, we characterize the regulation mechanisms of the lysine-sensing and thiamin pyrophosphate (TPP)-sensing riboswitches in <em>E. coli</em>. In agreement with previous results, our study indicates that the addition of lysine or TPP to the growth medium significantly reduces the expression of the respective riboswitch-regulated mRNAs. Surprisingly, we find that the addition of lysine also leads to a significant decrease in TPP-regulated mRNAs, suggesting that lysine indirectly affects TPP riboswitches. Using mutant strains from the Keio collection, we observe that the effect of lysine on TPP riboswitches is lost when perturbing the lysine degradation process. These data suggest that lysine degradation products may be used to generate TPP through metabolic conversion. In contrast, our results indicate that TPP does not modulate the regulation of the lysine riboswitch, suggesting that TPP does not indirectly affect the lysine riboswitch genetic control. Together, our results indicate that intracellular changes in lysine concentrations can be detected by TPP riboswitches, thus suggesting that riboswitches may be sensitive to cellular stress that are not directly related to their cognate metabolite.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 17","pages":"Article 169207"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Thiamin Pyrophosphate Riboswitch is Affected by Lysine-derived Metabolic Conversion Products in Escherichia coli\",\"authors\":\"Shirin Jahangirnejad, Jean-Philippe Côté, Daniel A. Lafontaine\",\"doi\":\"10.1016/j.jmb.2025.169207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Riboswitches are 5′ untranslated regulators that control gene expression by specifically monitoring cellular metabolites. Metabolite binding to the riboswitch triggers the genetic regulation at the transcriptional or translational level. Riboswitches typically exhibit high affinities and strong discrimination against non-cognate metabolites, making them well suited to regulate gene expression. Importantly, despite the well characterized cellular processes ensuring metabolic conversion and recycling in bacteria, there is little information about how these processes influence riboswitch regulation mechanisms. Here, we characterize the regulation mechanisms of the lysine-sensing and thiamin pyrophosphate (TPP)-sensing riboswitches in <em>E. coli</em>. In agreement with previous results, our study indicates that the addition of lysine or TPP to the growth medium significantly reduces the expression of the respective riboswitch-regulated mRNAs. Surprisingly, we find that the addition of lysine also leads to a significant decrease in TPP-regulated mRNAs, suggesting that lysine indirectly affects TPP riboswitches. Using mutant strains from the Keio collection, we observe that the effect of lysine on TPP riboswitches is lost when perturbing the lysine degradation process. These data suggest that lysine degradation products may be used to generate TPP through metabolic conversion. In contrast, our results indicate that TPP does not modulate the regulation of the lysine riboswitch, suggesting that TPP does not indirectly affect the lysine riboswitch genetic control. Together, our results indicate that intracellular changes in lysine concentrations can be detected by TPP riboswitches, thus suggesting that riboswitches may be sensitive to cellular stress that are not directly related to their cognate metabolite.</div></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"437 17\",\"pages\":\"Article 169207\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283625002736\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625002736","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Thiamin Pyrophosphate Riboswitch is Affected by Lysine-derived Metabolic Conversion Products in Escherichia coli
Riboswitches are 5′ untranslated regulators that control gene expression by specifically monitoring cellular metabolites. Metabolite binding to the riboswitch triggers the genetic regulation at the transcriptional or translational level. Riboswitches typically exhibit high affinities and strong discrimination against non-cognate metabolites, making them well suited to regulate gene expression. Importantly, despite the well characterized cellular processes ensuring metabolic conversion and recycling in bacteria, there is little information about how these processes influence riboswitch regulation mechanisms. Here, we characterize the regulation mechanisms of the lysine-sensing and thiamin pyrophosphate (TPP)-sensing riboswitches in E. coli. In agreement with previous results, our study indicates that the addition of lysine or TPP to the growth medium significantly reduces the expression of the respective riboswitch-regulated mRNAs. Surprisingly, we find that the addition of lysine also leads to a significant decrease in TPP-regulated mRNAs, suggesting that lysine indirectly affects TPP riboswitches. Using mutant strains from the Keio collection, we observe that the effect of lysine on TPP riboswitches is lost when perturbing the lysine degradation process. These data suggest that lysine degradation products may be used to generate TPP through metabolic conversion. In contrast, our results indicate that TPP does not modulate the regulation of the lysine riboswitch, suggesting that TPP does not indirectly affect the lysine riboswitch genetic control. Together, our results indicate that intracellular changes in lysine concentrations can be detected by TPP riboswitches, thus suggesting that riboswitches may be sensitive to cellular stress that are not directly related to their cognate metabolite.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.