{"title":"奥拉帕尼通过CDK5/Drp-1信号通路触发卵巢癌细胞线粒体分裂","authors":"Xun Gao, Qinghua Yin, Zhilian Wang","doi":"10.1002/jbt.70273","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ovarian cancer (OC) is the leading cause of death from gynecological malignancies worldwide. Alterations in mitochondrial metabolism are considered defining characteristics and therapeutic targets of OC. Olaparib, an oral inhibitor of poly (ADP-ribose) polymerase, has been approved for the treatment of OC. However, the precise mechanisms by which it exerts its effects remain unclear. In this study, we uncover a novel pharmacological function of Olaparib by demonstrating that it induces mitochondrial dysfunction in human SKOV3 ovarian cancer cells. Our findings revealed that Olaparib exposure induced mitochondrial oxidative stress by elevating mitochondrial ROS levels and diminishing GPx activity. Additionally, treatment with Olaparib led to mitochondrial dysfunction, as evidenced by decreased complex I and complex IV activity and reduced ATP production. We observed that Olaparib induced mitochondrial fission by decreasing the average length of mitochondria. Olaparib did not affect the levels of Mfn1, Mfn2, or the total expression of Drp-1. Intriguingly, Olaparib increased the levels of phosphorylated Drp-1 at Ser616. Further investigation revealed that Olaparib facilitated the activation of the CDK5 signaling pathway and induced Caspase 3 activation. Notably, inhibition of CDK5 signaling using roscovitine mitigated the effects of Olaparib on mitochondrial fission and dysfunction, indicating a role for CDK5 in this process. In summary, our research identifies that CDK5/Drp-1-mediated mitochondrial fission may represent a novel mechanism through which Olaparib exerts its anticancer effects in OC.</p>\n </div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Olaparib Triggers Mitochondrial Fission Through the CDK5/Drp-1 Signaling Pathway in Ovarian Cancer Cells\",\"authors\":\"Xun Gao, Qinghua Yin, Zhilian Wang\",\"doi\":\"10.1002/jbt.70273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Ovarian cancer (OC) is the leading cause of death from gynecological malignancies worldwide. Alterations in mitochondrial metabolism are considered defining characteristics and therapeutic targets of OC. Olaparib, an oral inhibitor of poly (ADP-ribose) polymerase, has been approved for the treatment of OC. However, the precise mechanisms by which it exerts its effects remain unclear. In this study, we uncover a novel pharmacological function of Olaparib by demonstrating that it induces mitochondrial dysfunction in human SKOV3 ovarian cancer cells. Our findings revealed that Olaparib exposure induced mitochondrial oxidative stress by elevating mitochondrial ROS levels and diminishing GPx activity. Additionally, treatment with Olaparib led to mitochondrial dysfunction, as evidenced by decreased complex I and complex IV activity and reduced ATP production. We observed that Olaparib induced mitochondrial fission by decreasing the average length of mitochondria. Olaparib did not affect the levels of Mfn1, Mfn2, or the total expression of Drp-1. Intriguingly, Olaparib increased the levels of phosphorylated Drp-1 at Ser616. Further investigation revealed that Olaparib facilitated the activation of the CDK5 signaling pathway and induced Caspase 3 activation. Notably, inhibition of CDK5 signaling using roscovitine mitigated the effects of Olaparib on mitochondrial fission and dysfunction, indicating a role for CDK5 in this process. In summary, our research identifies that CDK5/Drp-1-mediated mitochondrial fission may represent a novel mechanism through which Olaparib exerts its anticancer effects in OC.</p>\\n </div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 6\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70273\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Olaparib Triggers Mitochondrial Fission Through the CDK5/Drp-1 Signaling Pathway in Ovarian Cancer Cells
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies worldwide. Alterations in mitochondrial metabolism are considered defining characteristics and therapeutic targets of OC. Olaparib, an oral inhibitor of poly (ADP-ribose) polymerase, has been approved for the treatment of OC. However, the precise mechanisms by which it exerts its effects remain unclear. In this study, we uncover a novel pharmacological function of Olaparib by demonstrating that it induces mitochondrial dysfunction in human SKOV3 ovarian cancer cells. Our findings revealed that Olaparib exposure induced mitochondrial oxidative stress by elevating mitochondrial ROS levels and diminishing GPx activity. Additionally, treatment with Olaparib led to mitochondrial dysfunction, as evidenced by decreased complex I and complex IV activity and reduced ATP production. We observed that Olaparib induced mitochondrial fission by decreasing the average length of mitochondria. Olaparib did not affect the levels of Mfn1, Mfn2, or the total expression of Drp-1. Intriguingly, Olaparib increased the levels of phosphorylated Drp-1 at Ser616. Further investigation revealed that Olaparib facilitated the activation of the CDK5 signaling pathway and induced Caspase 3 activation. Notably, inhibition of CDK5 signaling using roscovitine mitigated the effects of Olaparib on mitochondrial fission and dysfunction, indicating a role for CDK5 in this process. In summary, our research identifies that CDK5/Drp-1-mediated mitochondrial fission may represent a novel mechanism through which Olaparib exerts its anticancer effects in OC.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.